Lecturer: Vladimir Tkachev, KTH
Webb: http://www.math.kth.se/~tkatchev/teaching/index.htm|
Email: tkatchev@kth.se

Some important examples

- Inviscid Burger's (Hopf) equation

$$
u_{t}^{\prime}+u u_{x}^{\prime}=0
$$

- Scalar conservation law

$$
u_{t}^{\prime}+\operatorname{div} \mathbf{F}(u)=0
$$

- Laplace Equation

$$
\Delta u \equiv u_{x x}^{\prime \prime}+u_{y y}^{\prime \prime}=0
$$

- Poisson's equation

$$
\Delta u \equiv u_{x x}^{\prime \prime}+u_{y y}^{\prime \prime}=f(x, y)
$$

- Heat (or diffusion) equation

$$
u_{t}^{\prime}-\Delta u=0
$$

- Wave equation

$$
u_{t t}^{\prime \prime}-\Delta u=0
$$

- Minimal surface equation

$$
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0
$$

Derivation of the heat equation

We consider the flow of heat along a metal insolated rod

Energy of an arbitrary piece of rod from a to b is

$$
E=\int_{a}^{b} A \cdot \rho c \cdot u(x, t) d x
$$

- $u=u(x, t)$ is temperature at time t at a given point x,
- A is the cross sectional area of the rod,
- c is the specific heat capacity of the rod

The wave heat flow:

$$
R=A(q(a, t)-q(b, t))=-A \int_{a}^{b} \frac{\partial}{\partial x} q(x, t) d x
$$

Conservation of energy (in terms of power = time-derivative of energy):

$$
R=\frac{\partial E}{\partial t}
$$

implies the integral form of the heat equation:

$$
\int_{a}^{b}\left(\rho c \cdot \frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} q(x, t)\right) d x=0 .
$$

By virtue of arbitrariness of a and b we get

$$
\rho c \cdot \frac{\partial}{\partial t} u(x, t)+\frac{\partial}{\partial x} q(x, t)=0 .
$$

Finally, by using the Fourier law $q(x, t)=-\lambda \frac{\partial}{\partial x} q(x, t)$ we arrive at (the differential form of) the heat equation:

$$
\frac{\partial u}{\partial t}-C \frac{\partial^{2} u}{\partial x^{2}}=0
$$

Classification of the $\mathbf{1}^{\text {st }}$ order PDE's

Standard notation:

For $u=u(x, y)$ one denotes the first derivatives by
$p=u_{x}^{\prime}$
$q=u_{y}^{\prime}$

- The most general $1^{\text {st }}$ order PDE

$$
F(x, y, u, p, q)=0
$$

- A linear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=c(x, y)
$$

- A homogeneous (linear) equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=0
$$

Generalizations of the linear case:

- A semilinear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=c(x, y, u)
$$

- A quasilinear equation

$$
a(x, y, u) u_{x}^{\prime}+b(x, y, u) u_{y}^{\prime}=c(x, y, u)
$$

Fully non-linear equation:

$$
F(x, y, u, p, q)=0
$$

with F chosen arbitrarily; then additionally required that

$$
{F_{p}^{\prime 2}+F_{q}^{\prime 2} \neq 0}^{2}
$$

1. Characteristics for a homogeneous linear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=0
$$

Characteristic equations:

$$
\frac{d x}{d t}=a(x, y), \quad \frac{d y}{d t}=b(x, y)
$$

this yields

$$
\frac{d u(x(t), y(t))}{d t}=0
$$

hence $u(x, y)=$ const along each characteristic curve. In particular $u(A)=u(B)$ on the picture above and one can determine solution (uniquely) if one knows the values of the solution at some points. For instance, if one knows the values along a curve γ which is transversal to characteristic curves:

2. The method of characteristics for general quasilinear equation

$$
a(x, y, u) u_{x}^{\prime}+b(x, y, u) u_{y}^{\prime}=c(x, y, u)
$$

If we introduce a vector field $V=\left(V_{1}, V_{2}, V_{3}\right)$ with coordinates

$$
V_{1}=a(x, y, u), \quad V_{2}=b(x, y, u), \quad V_{3}=c(x, y, u)
$$

then V is orthogonal to the normal vector

$$
N_{0}=\left(-u_{x}^{\prime}\left(x_{0} \cdot y_{0}\right),-u_{y}^{\prime}\left(x_{0} \cdot y_{0}\right), 1\right)
$$

at the point $\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$ on the graph of a solution $z=u(x, y)$:

- $\quad z=u(x, y)$ are integral surfaces of the vector field V
- a characteristic curve (in red)
- a Cauchy data Γ (in green): a curve in \mathbb{R}^{3} transversal to the vector field V

Characteristic equations:

$$
\frac{d x}{d t}=a(x, y, u), \quad \frac{d y}{d t}=b(x, y, u), \quad \frac{d z}{d t}=c(x, y, u)
$$

The Cauchy problem: given a curve Γ in \mathbb{R}^{3}, find a solution u of the $1^{\text {st }}$ order equation whose graph contains Γ :

$$
\left.u\right|_{\gamma}=h(x, y) .
$$

Fully non-linear equation:

$$
F(x, y, z, p, q)=0
$$

Where as usual $z=u(x, y), p=u_{x}^{\prime}$ and $q=u_{y}^{\prime}$, and

$$
F_{p}^{\prime 2}+{F_{q}^{\prime 2} \neq 0}^{2}
$$

The latter implies that locally either p or q can be found as a function of the remaining variables.

We have seen in the case F is linear with respect to p, q that the normal vector field to the graph $z=u(x, y)$ is orthogonal to the vector field $V=\left(-F_{p}^{\prime},-F_{q}^{\prime}, 1\right)$. In that case the Cauchy problem $\left.u\right|_{\gamma}=u_{0}(x, y)$ is well-posed if the curve γ is transversal to all characteristics it meets.

In order to adjust the characteristics method one needs to "linearize" the initial non-linear equation. An idea is to show that the first derivatives $p=u_{x}^{\prime}$ and $q=u_{y}^{\prime}$ satisfy quasilinear equations.

Namely, differentiating w.r.t. x and y yields two quasilinear equations for p, q :

$$
\begin{equation*}
F_{x}^{\prime}+F_{z}^{\prime} u_{x}^{\prime}+F_{p}^{\prime} p_{x}^{\prime}+F_{q}^{\prime} q_{x}^{\prime}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}^{\prime}+F_{z}^{\prime} u_{y}^{\prime}+F_{p}^{\prime} p_{y}^{\prime}+F_{q}^{\prime} q_{y}^{\prime}=0 \tag{2}
\end{equation*}
$$

Indeed, we have for the mixed partial derivatives: $p_{y}^{\prime}=u_{x y}^{\prime \prime}=u_{y x}^{\prime \prime}=q_{x}^{\prime}$, hence eq. (1) and (2) take the quasilinear form

$$
\begin{aligned}
& F_{p}^{\prime} p_{x}^{\prime}+F_{q}^{\prime} p_{y}^{\prime}=-F_{x}^{\prime}-F_{z}^{\prime} p \\
& F_{p}^{\prime} q_{x}^{\prime}+F_{q}^{\prime} q_{y}^{\prime}=-F_{y}^{\prime}-F_{z}^{\prime} q
\end{aligned}
$$

Applying the characteristic equations to this system we get

$$
\frac{d x}{d t}=F_{p}^{\prime}, \quad \frac{d y}{d t}=F_{q}^{\prime}, \quad \frac{d p}{d t}=-F_{x}^{\prime}-F_{z}^{\prime} p, \quad \frac{d q}{d t}=-F_{y}^{\prime}-F_{z}^{\prime} q .
$$

We need only one equation for z. One can get by differentiating $z=u(x, y)$ w.r.t. t subject to the first previous equations:

$$
\frac{d z}{d t}=\frac{d}{d t} u(x, y)=u_{x}^{\prime} \frac{d x}{d t}+u_{y}^{\prime} \frac{d y}{d t}=p \cdot F_{p}^{\prime}+q \cdot F_{q}^{\prime}
$$

Thus we have arrived at the following system

$$
\begin{gathered}
\frac{d x}{d t}=F_{p}^{\prime}, \\
\frac{d y}{d t}=F_{q}^{\prime}, \\
\frac{d z}{d t}=p \cdot F_{p}^{\prime}+q \cdot F_{q}^{\prime} \\
\frac{d p}{d t}=-F_{x}^{\prime}-F_{z}^{\prime} p, \\
\frac{d q}{d t}=-F_{y}^{\prime}-F_{z}^{\prime} q .
\end{gathered}
$$

This system determines a family of integral curves in $\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}$ and it is called the characteristic equations for the non-linear equation $F=0$.

In general, in the n-dimensional case one has a system of similar equations in $\mathbb{R}^{2 n+1}$. In fact, let we have a $1^{\text {st }}$ order non-linear equation

$$
F(x, u, D u)=0
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, and $D u=\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)=\left(p_{1}, \ldots, p_{n}\right)$ is the gradient of $u=u\left(x_{1}, \ldots, x_{n}\right)$. Then the modified system for characteristics is

$$
\begin{gathered}
\frac{d x_{k}}{d t}=F_{p_{k}}^{\prime}, \\
\frac{d p_{k}}{d t}=-F_{x_{k}}^{\prime}-F_{z}^{\prime} p_{k},
\end{gathered}
$$

for $k=1, \ldots, n$, and

$$
\frac{d z}{d t}=D F \cdot p=\sum_{k=1}^{n} F_{p_{k}}^{\prime} p_{k} .
$$

Return to $n=2$. We must complete our Cauchy conditions because we have now 5 ODE's but only 3 initial Cauchy conditions. Since now we are in

$$
\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}
$$

it is clear that we need only the Cauchy data p_{0} and q_{0}.

- We recall that the Cauchy condition can be written as a parameterized curve:

$$
\Gamma: \quad x=x_{0}(s), y=y_{0}(s), \quad z=z_{0}(s)
$$

Substituting this into $F(x, y, z, p, q)=0$ yields

$$
\begin{equation*}
F\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)=0 \tag{IC-1}
\end{equation*}
$$

- Another relation is found by differentiating the original initial condition (IC) with respect to the inner parameter s :

$$
\frac{d}{d s} z_{0}(s)=\frac{d}{d s} u\left(x_{0}(s), y_{0}(s)\right)=u_{x}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d x_{0}}{d s}+u_{y}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d y_{0}}{d s}
$$

This yields the so-called strip condition:

$$
\begin{equation*}
\frac{d}{d s} z_{0}(s)=p_{0}(s) \cdot \frac{d x_{0}}{d s}+q_{0}(s) \cdot \frac{d y_{0}}{d s} \tag{IC-2}
\end{equation*}
$$

These equations (IC-1) - (IC-2) provide two additional initial data, for p_{0} and q_{0}.
In fact p_{0} and q_{0} need not to be uniquely defined and need not even exist. However, once p_{0} and q_{0} do exist, one can determine an integral surface

$$
x=x(s, t), \quad y=y(s, t), \quad z=z(s, t)
$$

which gives a parametric form for the solution of the Cauchy problem for the non-linear equation $F=0$.

Remark: Our notation p_{0} and q_{0} here correspond to φ and ψ given in MacOwen, p. 34-35.

Method of envelopes

In general, for the $1^{\text {st }}$ order non-linear equation

$$
\begin{equation*}
F(x, u, D u)=0 \tag{}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, we set vector-notation

$$
\begin{aligned}
& D_{p} F=\left(F_{p_{1}}, F_{p_{2}}, \ldots, F_{p_{n}}\right) \\
& D_{x} F=\left(F_{x_{1}}, F_{x_{2}}, \ldots, F_{x_{n}}\right)
\end{aligned}
$$

(We assume that F is smooth, at least of class C^{2} in some domain in $\mathbb{R}^{2 n+1}$).
We are concerned with finding solutions u of $\left(^{*}\right)$ in some open set $U \subset \mathbb{R}^{n}$, subject to the Cauchy condition

$$
u=h \quad \text { on } \Gamma \text {, }
$$

where Γ is a subset of the boundary ∂U.

Suppose that we have found a parametric family of general solutions, say $u=u(x, a)$. Then we write also

$$
\left(D_{a} u, D_{x a}^{2}\right):=\left(\begin{array}{cccc}
u_{a_{1}} & u_{x_{1} a_{1}} & \cdots & u_{x_{n} a_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{a_{n}} & u_{x_{1} a_{n}} & \cdots & u_{x_{n} a_{n}}
\end{array}\right)
$$

for the composed Jacobian of size $n \times(n+1)$.

Definition: A function $u=u\left(x_{1}, \ldots, x_{n}\right)$ of class C^{2} is called a complete integral in $U \times A$ provided
(i) $\quad u(x, a)$ solves (*) for each $a \in A$
and
(ii) $\quad \operatorname{rank}\left(D_{a} u, D_{x a}^{2}\right)=n, \quad(x, a) \in U \times A$.

In other words, $u(x, a)$ depends on all the n independent parameters a_{1}, \ldots, a_{n}.

Example 1. Clairaut's equation (in honor of Alexis C. de Clairault, 1713-1765)

$$
x \cdot D u+f(D u)=u
$$

For instance, if $n=2$ one has

$$
x u_{x}^{\prime}+y u_{y}^{\prime}+f\left(u_{x}^{\prime}, u_{y}^{\prime}\right)=u
$$

Then a complete integral is

$$
u(x, a)=a \cdot x+f(a)
$$

Example 2. The eikonal equation from geometric optic is

$$
|D u|^{2}=u_{x_{1}}^{2}+u_{x_{2}}^{2}+\ldots+u_{x_{n}}^{2}=1
$$

A complete integral is an affine function

$$
u(x ; a, b)=a \cdot x+f(b),
$$

where $|a|=1, \quad b \in \mathbb{R}$.

Theorem 1. Let $u(x ; a)$ be a complete integral for $F=0$. Consider the vector equation

$$
\begin{equation*}
D_{a} u(x ; a)=0 \tag{**}
\end{equation*}
$$

Suppose we can solve it for a as a smooth function of x : $a=\varphi(x)$. Then the envelope function $v(x)=u(x ; \varphi(x))$ solves also the original equation $F=0$.

Remark: The method also works if one replaces one parameter, say a_{n} by a function of the remaining parameters, and substitute it into $u(x ; a)$. This yields in general a wide choice of envelope solutions.

Idea of the proof: We have

$$
v_{x_{k}}^{\prime}(x)=\frac{\partial}{\partial x_{k}} u(x ; \varphi(x))=u_{x_{k}}^{\prime}(x ; \varphi(x))+\sum_{i=1}^{n} u_{a_{i}}^{\prime}(x ; \varphi(x)) \cdot \frac{\partial \varphi_{i}}{\partial x_{k}}
$$

where $u_{a_{i}}^{\prime}=0$ for $a=\varphi(x)$ by virtue of our assumption (**). Hence

$$
v_{x_{k}}^{\prime}(x)=\frac{\partial}{\partial x_{k}} u(x ; \varphi(x)), \quad k=1, \ldots, n
$$

and it easily follows that the envelope function satisfies also $F(x, v, D v)=0$.

How to apply?

We return again to $n=2$. Then a complete integral is denoted by $u(x, y ; a, b)$ and it depends on independent parameters a and b. The above rank-condition is equivalent to saying that mapping

$$
(a, b) \rightarrow\left(u, u_{x}^{\prime}, u_{y}^{\prime}\right)
$$

has rank 2 at each fixed x and y, that is the matrix

$$
\left(\begin{array}{ccc}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)
$$

has maximal rank.
In practice one usually uses a one parametric envelope solution which can be found by substituting some auxiliary function $b=B(a)$ or $a=A(b)$ in $u(x, y ; a, b)$. We demonstrate this below.

Example 5. Consider $u_{x}^{\prime}=u_{y}^{\prime 2}$ subject to initial condition $u(0, y)=\frac{y^{2}}{2}$.
Solution by the envelope method. An idea is to find solutions in the class of the $v=a+b x+$ $c y+d x y$. The straightforward computation yields $d=0, b=c^{2}$, while a can be chosen arbitrarily. This gives after changing notation

$$
v=a+b^{2} x+b y
$$

We see that the our Jacobian matrix has rank 2 (the first two columns):

$$
\left(\begin{array}{lll}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 b x+y & 2 b & 1
\end{array}\right)
$$

Hence now we are in position of Theorem 1.
(i) Set $a=k b^{2}$, where the constant k will be chosen later. We have

$$
v=k b^{2}+b^{2} x+b y
$$

and the envelope equation is

$$
0=\frac{\partial}{\partial b} v=2 k b+2 b x+y
$$

hence $b=-\frac{y}{2 x+2 k}$
(ii) Substituting this into v we find

$$
v(x, y ; a, b)=-\frac{y^{2}}{4(x+k)}
$$

(iii) Finally applying our Cauchy condition we find $k=-\frac{1}{2}$. Hence the desired solution is

$$
u(x, y)=\frac{y^{2}}{2-4 x}
$$

Question: Why $a=k b^{2}$? Check that the above argument breaks down for $a=k b$

Example 6. Consider

$$
u_{x}^{\prime} u_{y}^{\prime}=u
$$

Analys:

- $u=x y+a x+b y+a b$ is a complete integral
- $u_{a}^{\prime}=x+b, u_{b}^{\prime}=y+a$, hence we find $a=-y$ and $b=-x$. This is the function φ in the Theorem.
- substituting φ into u yields: $u=x y+a x+b y+a b=0$ which provides us another, trivial, solution.

Another choice is $b=a$. Then we get

$$
u=x y+a x+a y+a^{2}
$$

and $0=u_{a}^{\prime}=x+y+2 a$, hence $a=-\frac{x+y}{2}$.
Substituting this into u yields $u=-\frac{(x-y)^{2}}{4}$.

