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Some important examples 

 

• Inviscid Burger’s (Hopf) equation  
0 

 

• Scalar conservation law  
div  0 

 

• Laplace Equation 

∆ 0 

 

• Poisson’s equation 
∆ ,  

 

• Heat (or diffusion) equation 
∆ 0 

• Wave equation 

∆ 0 

• Minimal surface equation 

div
1 | |

0 
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Derivation of the heat equation 

We consider the flow of heat along a metal insol                                   ated rod             

t                             initial temperature distribution  , 0   

q(a,t)                                                                                              q(b,t) 

 

 

                      x 

Energy of an arbitrary piece of rod from   to   is 

f(x) f(x) 

 

·   · ,    

• ,  is temperature at time t at a given point  , 
•  is the cross sectional area of the rod,  
•  is the specific heat capacity of the rod 

The wave heat flow: 

, , ,    

Conservation of energy (in terms of power = time rivative of energy): ‐de

 

implies the integral form of the heat  quation: e

  · ,   ,   0. 

By virtue of arbitrariness of   and   we get 

  · ,   , 0. 

Finally, by using the Fourier law  , ,  we arrive at (the differential form of) 

the heat equation: 

      0. 

  



Classification of the 1st order PDE’s 

Standard notation:  

For 

   

,  one denotes the first derivatives by 

 

• The most general 1st order PDE 

, , , , 0 

• A linear equation  

, , ,  

• A homogeneous (linear) equation 

, , 0 

 

Generalizations of the linear case: 

 

• A semilinear equation 

, , , ,  

• A quasilinear equation 

, , , , , ,  

 

Fully non-linear equation: 

, , , , 0 

with F chosen arbitrarily; then additional  ly required that 

0 

  



1. Characteristics for a homogeneous linear equation 
 

, , 0 

  

 

                                               B 

                              A 

         

                                                                              

 

, , ,  

Characteristic equations: 

,
0 

this yields 

hence , const  along each characteristic curve. In particular  on the picture 
above and one can determine solution (uniquely) if one knows the values of the solution at some 
points. For instance, if one knows the values along a curve  which is transversal to 
characteristic curves: 

 

               



2. The method of chara  u n ion  u n  cteristics for general q asili ear equat

, , , , , ,  

 , ,  with coordinates 

or general q asili ear equation

, , , ,  

If we introduce a ve r

, ,

If we introduce a ve rcto  field

, , , , , , , ,  

cto  field , ,  with coordinates 

, , , , , , , ,  

then  is orthogonal to the nor al  then  is orthogonal to the nor al  m  vector 

. ,

m  vector 

. , . , 1  

at the point , , ,  on the graph of a solution , : 

. , 1  

at the point , , ,  on the graph of a solution , : 

  

                                                                                                                                                      

  

  

                                                                                            ,                                                                                              ,  

                                                                                

                               Γ                                                                            Γ                                             

                                                                                  Characteristic curve                                                                                        Characteristic curve      

            

                                         .                 

            

                                         .                 

                                                                                                                                                                                                    

                                                                                                                                                                                                                          

• ,  are integral surfaces of the vector field  

                    

• ,  are integral surfaces of the vector field  
• a characteristic curve (in red) • a characteristic curve (in red) 
• a Cauchy data Γ (in green): a curve in  transversal to the vector field  • a Cauchy data Γ (in green): a curve in  transversal to the vector field  

Characteristic equaCharacteristic equations: tions: 

, , , , , , , ,   

The Cauchy problem: given a curve Γ in , find a solution  of the 1st order equation whose 
graph contains Γ: 

| ,  . 

  



Fully non-linear equation: 

, 0                                , , ,

Where as usual  , ,   and  , and 

0 

The latter implies that locally either  or  can be found as a function of the remaining variables. 

 

We have seen in the case  is linear with respect to ,  that the normal vector field to the graph 
,  is orthogonal to the vector field , , 1 . In that case the Cauchy problem 

| ,  is well-posed if the curve γ is transversal to all characteristics it meets. 

 

In order to adjust the characteristics method one needs to “linearize” the initial non-linear 
equation. An idea is to show that the first derivatives  and  satisfy quasilinear 
equations.  

 

Namely, differentiating w.r.t. t s ar  equations for , :  and  yields wo qua iline

0                (1) 

and  

0                (2) 

Indeed, we have for the mixed partial derivatives: , hence eq. (1) and (2) 
take the quasilinear form 

 

   

 

Applying the c r tic eq  to thisha acteris uations  system we get 

,          ,           ,         

We need only one equation for . One can get by differentiating ,  w.r.t.  subject to 
the first previous equations: 

.

, · ·  

  



Thus we have arrived at the following system 

, 

,       

  ·  ·

  

 

,   

  . 

This system determines a family of integral curves in  and it is called the 
characteristic equations for the non-linear equation 0.  

 

In general, in the -dimensional case one has a system of similar equations in . In fact, let 
we have a 1st order non-linear equation  

, , 0 

where , … ,  , 2,  and , … , , … ,  is the gradient of 
, … , . Then the modified system for characteristics is 

,  

   ,  

for 1,… , , and 

  · ∑   . 

 

Return to 2 . We must complete our Cauchy conditions because we have now 5 ODE’s but 
only 3 initial Cauchy conditions. Since now we are in  

 

it is clear that we need only the Cauchy data  and .  

• We recall that the Ca o d ti r s  a eterized curve: uchy c n i on can be w itten a  a p ram

Γ:       ,     ,   

Substituting this i ields nto , , , , 0 y

, , , , 0                            (IC-1) 



 

• Another relation is found by differentiating the original initial condition (IC) with respect 
to the inner parameter : 

       , ,   · ,   ·  

This yields the a e t : so-c ll d s rip condition  

       · ·               (IC-2) 

 

These equations (IC-1) - (IC-2) provide two additional initial data, for  and .  

In fact  and  need not to be uniquely defined and need not even exist. However, once  and 
 do exist, one can determine an integral surface  

, ,    , ,    ,  

which gives a parametric form for the solution of the Cauchy problem for the non-linear equation 
0. 

 

Remark: Our notation  and  here correspond to  and  given in MacOwen, p. 34-35. 

 

Method of envelopes 

In general, for the 1st order non-linear equation 

, , 0                                                  (*) 

where , … ,  , 2, we set vector-notation 

 , , … ,

, , … ,  

(We assume that  is smooth, at least of class  in some domain i ). n 

We are concerned with finding solutions  of (*) in some open set , subject to the 
Cauchy condition 

where Γ is a subset of the boundary  . 

       on Γ, 

 



Suppose that we have found a parametric family of general solutions, say , . Then we 
write also 

( ,    

or the composed Jacobian of size  1 . f

 

Definition:  A function  , … ,  of class  is called a complete integral in  
provided 

(i) ,  solves (*) for each  

and 

(ii) rank  ,                ( , .    ( ,

In other words, ,  depends on all the  independent parameters , … , . 

 
 
 
Example 1. Clairaut’s equation (in ho . lairault, 1713-1765) nor of Alexis C  de C

·    
 

For instance, if 2 one has 

,    

Then a complete integral is 

, ·  

 

 

Example 2. The eikonal equati mon from geo etric optic is 

| |  … 1 

A complete integral is an affine function  

; , · , 

where | | 1,    .  

 

  



Theorem 1. Let ; le r 0. Consider the vector equation  be a comp te integral fo

                       ; 0                                      (**) 

Suppose we can solve it for  as a smooth function of : . Then the envelope function 
;    solves also the original equation 0. 

Remark: The method also works if one replaces one parameter, say  by a function of the 
remaining parameters, and substitute it into  ; . This yields in general a wide choice of 
envelope solutions. 

Idea of the proof: We have  

;   ;     ;   ·   

where 0 for  by virtue of our assumption (**). Hence  

;   ,            1,… ,

and it easily follows that the envelope function satisfies also , , 0.  

 

How to apply? 

We return again to 2. Then a complete integral is denoted by , ; ,  and it depends on 
independent parameters  and . The above rank-condition is equivalent to saying that mapping 

, , ,  

has rank 2 at each fixed  and , that is the ma   trix

 

has maximal rank.  

In practice one usually uses a one parametric envelope solution which can be found by 
substituting some auxiliary function  or   in , ; , . We demonstrate 
this below. 

Example 5. Consider  subject to initial condition 0, .  

Solution by the envelope method. An idea is to find solutions in the class of the 
. The straightforward computation yields 0, , while  can be chosen 

arbitrarily. This gives after changing notation 

 



We see that the our Jacobian trima x has rank 2 (the first two columns): 

1 0 0
2 2 1  

Hence now we are in position of Theorem 1. 

(i) Set , where the constant . We have   will be chosen later
 

and the envelope equation is 

0 2 2 , 

hence  
(ii) Substituting this into  we find 

, ; , 4  

(iii) Finally applying our Cauchy cond ndition we fi  . Hence the desired solution is 

, 2 4  

Question: Why ? Check that the above argument breaks down  for  

 

Example 6. Consider 

 

Analys: 

• is a complete in tegral 
• , ,  he .  This is the function  in 

the Theorem
 nce we find  and 
. 

• substituting  into  yields: 0 
which provides us another, trivial, solution. 

Another choice is . Then  we get  

 

and 0 2 , hence .  

Substituting this into  yields . 

 


