Lecturer: Viadimir Tkachev, KTH

Webb: http://www.math.kth.se/~tkatchev/teaching/index.html

Email: tkatchev@kth.se

Some important examples

e Inviscid Burger’s (Hopf) equation
u; +uu, =0

e Scalar conservation law
u; +divF(u) =0

e Laplace Equation

Au = uyy, +uy, =0

e Poisson’s equation

!

Au = wly +uyy, = f(x,y)

e Heat (or diffusion) equation
ur—Au=0
e Wave equation

ugp —Au=0
e Minimal surface equation

Vu
div———=0
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Derivation of the heat equation

We consider the flow of heat along a metal insolated rod
A
t initial temperature distribution u(x, 0) = f(x)

q(a,t) q(b,t)
f(x)

__>/\/__>

Energy of an arbitrary piece of rod from a to b is

b
Ezf A-pc-u(xt)dx
a

e u =u(x,t)istemperature at time t at a given point x,
e Aisthe cross sectional area of the rod,
e cisthe specific heat capacity of the rod

The wave heat flow:

b g
R=A4(q(at)—qb,1)) = —AJ aq(x, t) dx

Conservation of energy (in terms of power = time-derivative of energy):
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implies the integral form of the heat equation:

b d 0
J; (p c-au(x, t) + aq(x, t))dx = 0.

By virtue of arbitrariness of a and b we get

0 0
pc -&u(x, t) + aq(x,t) =0.
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Finally, by using the Fourier law q(x, t) = —A%q(x, t) we arrive at (the differential form of)

the heat equation:



Classification of the 1% order PDE’s
Standard notation:

For u = u(x, y) one denotes the first derivatives by

e The most general 1% order PDE
F(x,y,u,p,q) =0
e Alinear equation
a(x, y)uy + b(x, y)uy = c(x,y)
e A homogeneous (linear) equation

a(x,y)uy + b(x,y)u, =0

Generalizations of the linear case:

e A semilinear equation
a(x,y)uy + b(x, y)uy, = c(x,y,u)
e A quasilinear equation

a(x,y, wuy + b(x,y, u)uy, = c(x,y,u)

Fully non-linear equation:

F(x,y,u,p,q) =0

with F chosen arbitrarily; then additionally required that
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1. Characteristics for a homogeneous linear equation

a(x,y)uy + b(x,y)uy, =0
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Characteristic equations:

dx dy

i a(x,y), i b(x,y)

this yields

du(x(®),y(t)) _

0
dt

hence u(x,y) = const along each characteristic curve. In particular u(4) = u(B) on the picture
above and one can determine solution (uniquely) if one knows the values of the solution at some
points. For instance, if one knows the values along a curve y which is transversal to
characteristic curves:
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2. The method of characteristics for general quasilinear equation
a(x,y,wuy + b(x,y, wuy = c(x,y,u)
If we introduce a vector field V = (V,, V,, V3) with coordinates
V; =alx,y,u), V, = b(x,y,u), Vs =c(x,y,u)
then V is orthogonal to the normal vector
No = (—ux(x0.¥0), —uy, (0. ¥0), 1)

at the point (x,, vo, u(xg, ¥o)) on the graph of a solution z = u(x, y):

z Ny

z=u(x,y)

Characteristic curve

Y

e z = u(x,y) are integral surfaces of the vector field V
e acharacteristic curve (in red)
e aCauchy data T (in green): a curve in R3 transversal to the vector field V

Characteristic equations:

dx

dy dz
Frin a(x,y,u), i b(x,y,u), i c(x,y,u)

The Cauchy problem: given a curve I' in R3, find a solution u of the 1% order equation whose
graph contains I':

uly =h(x,y) .



Fully non-linear equation:

F(x,y,z,p,q) =0

Where as usual z = u(x,y), p = uyand g = uy, , and
E?+FE*+0

The latter implies that locally either p or g can be found as a function of the remaining variables.

We have seen in the case F is linear with respect to p, g that the normal vector field to the graph
z = u(x,y) is orthogonal to the vector field V = (—F;, —F, 1). In that case the Cauchy problem
uly, = ug(x,y) is well-posed if the curve y is transversal to all characteristics it meets.

In order to adjust the characteristics method one needs to “linearize” the initial non-linear
equation. An idea is to show that the first derivatives p = u; and g = u;, satisfy quasilinear

equations.

Namely, differentiating w.r.t. x and y yields two quasilinear equations for p, q:
F + Fuy + Eypy + Fjqx, =0 Q)
and
Fy + Fuy, + F;py, + Fjq, = 0 2
Indeed, we have for the mixed partial derivatives: p), = uy, = uy, = qy, hence eq. (1) and (2)
take the quasilinear form
Epx + Fjpy = —F —Fp
Fpax + Fgay = —F — Fq

Applying the characteristic equations to this system we get

dy _ dp _ ’ I dq _ ’ I
dt_Fq’ at ke = FEp, dt by =Fq.

dx _
Pl

We need only one equation for z. One can get by differentiating z = u(x, y) w.r.t. t subject to
the first previous equations:

dz _d dx dy
dt _ de”



Thus we have arrived at the following system

dx

_—F”
dt p
ay _
2~ fa

1
dr x_FZp!
dq _ ’ ’
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This system determines a family of integral curves in R® = R, X R, x R} and it is called the
characteristic equations for the non-linear equation F = 0.

In general, in the n-dimensional case one has a system of similar equations in R?"*1, In fact, let
we have a 1% order non-linear equation

F(x,u,Du) =0

where x = (x, ..., x,) € R® ,n > 2, and Du = (uy,, ..., Uy, ) = (P1, .., Py) is the gradient of
u = u(xy, ..., x,). Then the modified system for characteristics is

dxy _
dt Fpk’

dpr __ 1] ’
dt - _ka - Zpk’

fork=1,...,n,and

dz

— = DF -p =¥k By D

Return to n = 2 . We must complete our Cauchy conditions because we have now 5 ODE’s but
only 3 initial Cauchy conditions. Since now we are in

R® = RZ, x R%, x R}
it is clear that we need only the Cauchy data p, and q.
e We recall that the Cauchy condition can be written as a parameterized curve:
[ x=x0(5), ¥y =0(s), z=20(s)
Substituting this into F(x, y, z,p, q) = 0 yields

F(x9,Y0,Z0,Po,q0) = 0 (IC-1)



e Another relation is found by differentiating the original initial condition (IC) with respect
to the inner parameter s:

d dyo
2 20(8) = u(x0(8), Yo(9)) = (305D, 30(5)) - 224 15 (20, 70(5)) - o2

This yields the so-called strip condition:

= 20(5) = po(s) - T2+ qo(s) - 2 (IC-2)

These equations (IC-1) - (IC-2) provide two additional initial data, for p, and q,.

In fact p, and g, need not to be uniquely defined and need not even exist. However, once p, and
q, do exist, one can determine an integral surface

x=x(s,t), y=y(s,t), z=2z(s,t)

which gives a parametric form for the solution of the Cauchy problem for the non-linear equation
F=0.

Remark: Our notation p, and g, here correspond to ¢ and y given in MacOwen, p. 34-35.

Method of envelopes
In general, for the 1* order non-linear equation
F(x,u,Du) =0 *)
where x = (x4, ..., x,) € R", n = 2, we set vector-notation
= (f D1 Fpys e 'Fpn)
DF = (F,Fy,, . F)
(We assume that F is smooth, at least of class €2 in some domain in R?"*1),

We are concerned with finding solutions u of (*) in some open set U c R", subject to the
Cauchy condition

u=nh onT,

where T is a subset of the boundary dU.



Suppose that we have found a parametric family of general solutions, say u = u(x, a). Then we
write also

Ug, Uxja; " Uxyag
2 — : : . :
(Dau' Dxa) = : '

uan uxl ap " uxnan

for the composed Jacobian of sizen X (n + 1).

Definition: A function u = u(x, ..., x,,) of class C? is called a complete integral in U x A
provided

(1) u(x, a) solves (*) foreacha € A
and
(i)  rank (D u, D2,) =n, (x,a) € U X A.

In other words, u(x, a) depends on all the n independent parameters a, ..., a,.

Example 1. Clairaut’s equation (in honor of Alexis C. de Clairault, 1713-1765)
x-Du+f(Du)=u
For instance, if n = 2 one has
xuy + yuy, + f(u;,ug,) =u
Then a complete integral is

u(x,a) =a-x+ f(a)

Example 2. The eikonal equation from geometric optic is
|Dul? = ug, +uf, + ..+ui =1
A complete integral is an affine function
u(x;a,b) =a-x+ f(b),

where |a| =1, b € R.



Theorem 1. Let u(x; a) be a complete integral for F = 0. Consider the vector equation
Dgu(x;a) =0 **)

Suppose we can solve it for a as a smooth function of x: a = ¢(x). Then the envelope function
v(x) = u(x; ¢(x)) solves also the original equation F = 0.

Remark: The method also works if one replaces one parameter, say a,, by a function of the
remaining parameters, and substitute it into u(x; a). This yields in general a wide choice of
envelope solutions.

Idea of the proof: We have

n

d
v, (0 = 5l 0(0) = i (x5 900) + > i (1 9(0)

=1

09;
0xy,

where ug, = 0 for a = ¢(x) by virtue of our assumption (**). Hence

d
Uy, (X) = a—xku(x; <p(x)), k=1,..,n

and it easily follows that the envelope function satisfies also F(x,v,Dv) = 0. m

How to apply?

We return again to n = 2. Then a complete integral is denoted by u(x, y; a, b) and it depends on
independent parameters a and b. The above rank-condition is equivalent to saying that mapping

(a,b) — (u,uy, uy)

has rank 2 at each fixed x and y, that is the matrix
(u; e uy>
wupe u)

In practice one usually uses a one parametric envelope solution which can be found by
substituting some auxiliary function b = B(a) or a = A(b) inu(x,y; a,b). We demonstrate
this below.

has maximal rank.

2

Example 5. Consider u;, = u’y2 subject to initial condition u(0,y) = y?

Solution by the envelope method. An idea is to find solutions in the class of the v = a + bx +
cy + dxy. The straightforward computation yields d = 0, b = ¢, while a can be chosen

arbitrarily. This gives after changing notation

v =a+ b%x + by



We see that the our Jacobian matrix has rank 2 (the first two columns):
Ug Ugy Upa) ( 1 0 0)
u, Upy uy,) \2bx+y 2b 1

Hence now we are in position of Theorem 1.

(i) Set a = kb?, where the constant k will be chosen later. We have

v = kb? + b?x + by
and the envelope equation is

9]
O—%U—Zkb+2bx+y,

y
2x+2k

(i) Substituting this into v we find

hence b = —

2

_ _ Y
vlnyiab) = = 3n T
(iii)  Finally applying our Cauchy condition we find k = —i. Hence the desired solution is
yZ
wwy) =55

Question: Why a = kb?? Check that the above argument breaks down for a = kb

Example 6. Consider
UplUy = U
Analys:

e u=xy+ax+ by + ab isacomplete integral

e u,=x+b,u,=y+a, hence we find a = —y and b = —x. This is the function ¢ in

the Theorem.
e substituting ¢ intou yields: u =xy +ax + by +ab =0
which provides us another, trivial, solution.

Another choice is b = a. Then we get
u=xy+ax +ay+ a?

and0=u;1=x+y+2a,hencea=—”Ty.

Y
Substituting this into u yields u = — < 43') .



