Hamilton Jacobi equation
u; + H(Du,x) =0

Example 1. Let H(p, x) = |p|? — 1, then u(x, t) = t + v(x) is a solution to the Hamilton-
Jacobi equation if and only if v(x) is a solution to the ikonal equation

|Dv| = 1.
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Example 2. Let H(p, x) = % + k% This is the Hamiltonian for a particle on an elastic
string (Hooke’s Hamiltonian), which is equal to the total energy: the sum of kinetic energy
Ip!?

. kx? . .
Py and potential energy % Here p is the momentum of the particle.

In order to find characteristics we notice that our independent variables: x = (x4, x5, ..., X;,)
and t.Taking s as a inner parameter along the characteristic curves we obtain famous
Hamilton relations for duality between momentum p and coordinate x:

X‘k = Hpk(p’ x)
pk = _ka(p’ x)

and equation for time, ¢ = 1 and for the unknown function:

n
U= z PrHy, (0, %) + Dpiq
k=1

e Herepny =ugand p = Du = (uy,, Uy,, -, Uy, ) is the generalized momentum
o It follows form the third equation that t = s, hence without loss of generality we can
consider time t as the inner parameter along the characteristic curves

As in the case of the eikonal and inviscid Burger’s equation, in general, there are “few”
classical solutions, and our goal is to find a formula for an appropriate weak or generalized
solution which exists for all times ¢t > 0.



Variational interpretation

Historically, the pair
X = Hp,(p,x), k=1..n
pk = _ka(prx)' k = 1 ...n

of Hamilton-Jacobi equations arises in the classical mechanics as consequence of some
calculus of variations.

Dictionary:

Let us consider an arbitrary Lagrangian, that is a function of g-variables and coordinates:
L=L(gx):R"xR" - R, q = (91,92 -, qn),

is a smooth function and introduce the action (functional)

Ew) = ftL(W(S),W(S)) ds
0

defined for vector-functions w(s): [0, t] » R"™ in the class

A={w=w(s): w()=y, w()=ux}

Euler-Lagrange equations. The function X = X(s) solves the system of Euler-Lagrange
equations:

d . .
— (DqL(X,X)) =D, L(X,X), 0<s<t

Example 3: Hooke’s law. Let us consider the Lagrangian for one-dimensional case: n = 1,

2 k 2
g0 =2

Then the Euler-Lagrange equation is the Hooke law:

%(mx)=—kX, thatis X =-X%x

m



Reduction to Hamilton's ODE

We now convert the Euler-Lagrange equations (24 order ODE) into Hamiltonian’s
equations (1st order ODE).

In mechanics, the g-derivative of the Lagrangian is called the generalized momentum,
hence we define the momentum variables by the system

p = DyL(q,x)

We shall assume that L(q, x) satisfies the following property: the above equation allows to
express all g as functions of p and x:

q=0Q([x)

and the function Q(p, x) is smooth. In other words, we have
p = DyL(Q(p, x), x).
Then we can associate with the given Lagrangian L(q, x) the Hamiltonian

H(p,x) = (p,Q(», %)) — L(Q(p, x),x).

Example 3 (cont). For the Hooke’s Lagrangian we have
D4L(g,x) = (T - T)q =mq =Pp.

Hence q =Q(p,x) = %and the corresponding Hamiltonian is

m

2 2 2 2 2
D mQ*°(p,x) kx*\ p° kx

(cf. Example 2).

Now we rewrite our Euler-Lagrange equations in terms of p and x:

Theorem (Derivation of Hamilton’s ODE). In the introduced notation,
X(s) = DpH(p(s),X(s))

P(s) = —=DxH(p(s), X(s))

and H(p(s), X(s) is constant along the integral curves.



Legendre transform and Hopf-Lax formula

Hamilton-Jacobi PDE <« Hamilton’s ODE
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Variational interpretation <> Euler-Lagrange ODE

Our conjectures:

e We assume that H = H(p) (that is our situation is homogeneous with respect to
space coordinates)

e The Lagrangian under consideration L(q) is also independent of x and will be

assumed to be a convex function having superlinear growth at infinity:
L
lim ﬂ = +o0
q— |q|

e Convexity:
L(tg, + (1 —t)qz) < tL(qy) + (1 —¢t) L(q2)

e (Convexity implies continuity (and even almost everywhere differentiability and a.e.
existence the second differential)

The Legendre transform of a function L(q) is
L'(p) = max{(p,q) —L(9)}, pER".

e The maximum is achieved at some point g* € R™ and applying the Fermat theorem
we deduce that

p=VqL(q)
Hence, one can solve the last equation, thatis g* = Q(p)

e Moreover, we find

L'(p) =(p.q")—L(g") =(p,Q(®) — L(Q(p)) = H(p)

H(p) = L"(p)

Theorem 1. The Legendre transform is an involution:

(1) H(p) is a convex function with superlinear growth, and
(i)  H(q) =L(q).



Finally, let us minimize the following action functional:

ELgw) = f L(W(s)) ds + g(W(O))
0

subject to the conditions: w(0) = y is an arbitrary point in R™ and w(t) is the given x.

In other words, we define

u(x, t) = inf{ftL(v’v(s)) ds+ g(w(0)), w(0)=y,w()= x}
0

The infimum is taken over all C*-functions w with w(t) = x.

Theorem 2. (Hopf-Lax formula) An explicit form of the above defined function u(x,t) is

u(x, ) = minft L (?) +90)}

Proof: Denote by U the right hand side in the last formula. Fix y € R™ and consider
S
wis)=y+,(x-)
we obtain
gy X—y
u(x, t) < f L(W(s)) ds + g(W(O)) =tL (T) +g(y)
0
Hence u(x,t) < U.

In other direction, since L is convey, it satisfies the Jensen’s inequality:

L (% Ltv'v(s) ds) < %fOtL(v'v(s)) ds.

Because%fot w(s)ds = M = g , where we denoted w(0) = y, we obtain

tL (Q) +g(@y) < f:L(v'v(s))ds +90)

Hence U < u(x,t). m

Theorem. Suppose u(x, t) is defined by the Hopf-Lax formula and the initial data is a
Lipschitz function:

lg() =g < Mllx=yl, vx,y €R"
Then u(x, t) is Lipschitz continuous in R" X (0, +), and solves the initial value problem

u; + HDu,x) =0, u(x,0) = gx).



