5. Sobolev spaces: basic definitions
5.1 Auxiliary facts
We shall use the following well-known facts about completion of a normed space.

Let X, Y be two vector spaces with norms |||y and ||:||y respectively. A linearmap T: X - Y
is called an isometry if ||Tx||y = ||x||x for any x € X. As a corollary, an isometry is always
an injection and one usually identify X and T(X) c Y.

Theorem (completion of a normed space).

Every normed space (X, ||:||lx) embeds isometrically as a dense subspace of a Banach space
(Y, lI-lly)- That is there is a Banach space (Y, ||:|ly) and a linear isometry i:X — Y such that
i(X)isdenseinY.

Usually one denotes the completion as a closure: Y = X

Remark. The canonical completion can be defined even for general metric spaces. It has
the structure of the factor space Xcqycny/~, Where Xcqycny is the (vector) space of all
Cauchy sequences in X w. r. t. the norm ||||y . The equivalence relation ~ is defined by:
(xp) ~ (x;) iff lim,_ollx, — x,llx = 0. The canonical embedding is then the map
i(x) = (x,%,%, ...) € Xcqucny Which maps a point x € X to the constant sequence.

Examples.

a) The real numbers are completion of rational numbers Q = R with respect to the
absolute value norm ||x|| = |x|

b) The completion of rational numbers with respect to the norm ||x|| = |x|, is Q= Q,
(Ix[, is the so called p-adic norm defined for a given prime p = 2,p € N and for a

k
. a — .
non-zero rational number x = pT as x|, =p k, where a, b are coprime to p).

c) The Lebesgue p-space
LP(U) = {f (x) measurable and [, |f(x)|? dx < oo}, 1<p<ow

can be equivalently characterized as the completion of space C;°(U) of test functions
with respect to the integral norm

1/p
lell, = llellrw) = <f Iw(x)lpdx>
U

Notice that for p = 1, a linear functional I(¢) = fU ¢ (x)dx is a bounded functional:
I(o) < lloll,

hence it has a unique extension to a bounded functional on L' (U). This extension is

well-known as the Lebesgue integral.

In examples (a) and (c) (for p = 2) the norms are generated by corresponding inner
(scalar) products.



Equivalent norms. Two norms ||x||; and [|x||, on X are equivalent if they which satisfy the
bilateral inequality M, ||x|; < ||x|l, < M,||x||;, with M), > 0. Then topologically (X, ||x]|,)
and (X, ||x||,) (as well as their completions) are homeomorphic (with a homeomorphism
given by the identity operator).

In what follows, we identify two (normed) spaces with equivalent norms.
Another important fact is the following

Theorem. If (X, (-,+)) is a space with the scalar product {-,-) then the completion X is a scalar
product space; the scalar product restriction to X coincides with {-,-). Moreover, X is a Hilbert
space with respect to the mentioned extension of (:,).

5.2 Sobolev spaces: basic definitions

The number of continuous derivatives measures how regular the function is. We have the
following chain of classes of regularity:

L3,.(U) o ¢°(U) o Lip(U) o €Y (U) o C*(U) > --- > €*(U) > €*(U) > Poly

In order to work with weak solutions one has to relax the notion of derivative and
understand it in an “integral” sense. For any domain U in R"™ we define the scalar product

(W, v) = (W, V)yrey = fU (Vu-Vv +uv) dx

and the associated norm

2
lully = w0y = ( | avap +uw) dx) = (a3 + ")
U =

where u, v are functions of class C1(U) (or class C3 (V).

Remark 1. Adding the L?-norm of the gradient ||[Vul|, has effect of a “smoothness” on L?.
In other words, one can canonically define the derivatives for functions in the completed
space. We shall see this later.

Remark 2. The introduced ||u|[; , satisfies all the properties of a norm on any subspace of
differentiable functions. In particular, if we consider all differentiable functions with
continuous derivative we obtain a normed vector space (C*(U), ||-]l12). Unfortunately, this
(normed) space is not complete as shows the next example.



Example 1. Consider the sequence

is a Cauchy sequence (in ||+||, ;) in the interval U = [0,1], while it has no limit in C*([—1,1]).
Indeed, one can show (check!) thatfor1 <m <n

(20n%?m? + 3n? + 6nm — m?)(m — n)?
60n3m*

Ifo = fulliz =

Hence (f,,) is a Cauchy sequence, while the pointwise limit (which is a strong limit in the
L?>([—1,1])-norm) is function f = |x|. One can see that f ¢ C1([—1,1]). m

Definition. Define the Sobolev space Hé'Z(U) as the completion of C}(U) with respect to
the norm ||-||; ;. Similarly, H"*(U) denotes the completion of C* (U) in the same norm.

Remark 3. Hé’Z(U) and H(U) are Hilbert spaces with the corresponding scalar products

induced by (u, v);. Intuitively, one can think of functions in Hé’Z(U) as functions with zero
boundary values on dU.

Lemma 1. H,"*(U) is a subspace of L*(U).

mIndeed, let (f;,) € C;°(U) be a Cauchy sequence in ||-||; , . Then

Ifn = finllz < fa = fnlloz
which implies that (f,,) converges in L?(U) to some function f € L?(U). In particular?,
c2U) cL2). [
Thus we have
Hy*(U) & ()
and the operator of inclusion is continuous in the usual sense.

Similarly, the sequence of partial derivatives (D, f,,) form a Cauchy sequence in L*(U) for
any 1 < k < n. It follows that for any such k, the derivative D, f, converges in L*(U) to

some function g, € L?(U). It is natural to think of the g, as the generalized derivative of
f with respect to x;, in the described integral sense.

! The completion with respect to ||-||; ».



Lemma 2. In the above notation, the weak derivative Dy, f (in the sense of distributions) is a
regular distribution which belongs to class L?(U). Moreover, Dy, f = gi.

m Consider some k € {1,2,...,n} and any test function ¢ € C;°(U). Since Dy, f, = gx in
L2(U),

1/2

1/2
s(fu <p2dx> (fu (kafn—gk)zcix> -o.

f @ Dy, frn dx — f Py dx
U U

It follows that

3 lim @ Dy, frdx = j Qg dx
u

— 00
n U

On the other hand, f,, is differentiable, hence

J. 4 kafn dx = _j fa ka(p dx
U U

Since f,, — f in L?(U), the latter identity yields

lim @ Dy, fr dx = —lim f fa Dy, dx = —f f Dy, @ dx
n=eJy u

— 00
n U

This proves that

f Py dx = —f f Dy, dx,
U U

that is g is the weak Dy, -derivative of f. m

The last lemma suggests that a more general Sobolev space may be defined. Namely, we
have the following definition.

Definition. We denote by W12(U) the subspace of L?(U) consisting of functions whose
weak derivatives are functions in L?(U). In other words, W'2(U) consists of functions
f € L?(U) such that forany k = 1, ...,n there is g, € L?(U) and

f QU dx = —f UQy, dx
u u

for any test function ¢ € Cy°(U).

Corollary 1. We have the following embeddings:
HY?(U) & HY2(U) © WH2(U) < L2(U).

Moreover, each inclusion is a bounded operator with respect to the corresponding norms.



Remark 4. In fact, it can be shown that H¥?(U) = W2(U).

We already know that all Lebesgue spaces LP(U) are complete. It is natural to extend the
above definitions on these classes.

Definition. In general we define

1/p
lullyp = (j (IVulP + u?) dx> . 1<p<o.
U

By the Minkowski inequality, the latter is a norm on C¢ (U) and C* (U), that is

lu +vllip < llullyy + Vil

Hence we can similarly define H;’p(U) and H'® (V) as the completions with respect to the
lIIl1, of C3(U) and C* (U) respectively.

In general WP-Sobolev spaces are defined then as:
WP (U) = {u € LP(U): the weak derivatives D, u belong to class LP (U)}

Finally, one defines the general Sobolev spaces analogously for higher derivatives.
Namely, for a given integer m > 1 and a real p = 1 we define W™P(U) as space of all
LP(U)-functions whose weak derivatives of order |a| < m are also in LP (U):

Wm™P(U) = {u € LP(U): D% € LP(U), la] <m}

The norm in W™P (U) is then defined by

1/p 1/p
lullmp = ( | (Z ID“u|p> dx> = (Z ||Dau||§p>
U lalsm lalsm

It is easy to show that this norm is equivalent to

I L
a|lsm

Lemma. W™P (U) is a Banach space.

Proof follows is evident.



We comment briefly some special cases:

e WU(A) = AC(A), where A is an interval in R and AC(A) is class of absolutely
continuous functions in A

e W?1*(A) = Lip (A) is class of Lipschitz functions in the interval A

e W™*®(U) are normed algebras (product of two elements is again an element of the
space)

e  W™2(U) are Hilbert subspaces of L?(U) for any integer m = 1 and sometimes they are
denoted also by H™(U)

5.3 Examples

Example 1. Modifying the argument given in Example 1 one can show that function
f(x) =1—|x|on[—1,1] and f(x) = 0 otherwise is in Hy"*([—1,1]).

Example 2. Consider f(xy,x;) = a(x;) + b(x,) such that a and b are arbitrary measurable
functions (for example they may be nowhere differentiable). Then the weak derivative
6§1x2f exists and equal to zero. Indeed, we choose M large enough such that the support of

a test function ¢ is contained in [-M, M] X [-M, M]. Then

M

M M M M
f M3ff%m¢¢n=f M&MMI %mwma+f
-M -M -M

-M -M

M
b@adwf 02, ¢ dx,
-M

where the inner integrals in the right hand side are equal to zero. Hence a,flxzf =0 in
the distributional sense.

The following fact is useful in our further applications.

Lemma. Forany R > 0

n
|x|* € W™P(By(R)) if andonlyif k< . m

and the weak derivatives coincide with the usual derivatives of |x|* in By(R)\{0}.

mDenote Bygy = B and notice that

|x|™% € LP(B) ifandonlyif pk <n. ™



Consider any test function ¢ € C;°(B) and fix some k < g. Then n—k>n—pk >0

(sincep = 1) and

f @) |x|™* dx = lim QL x| 7% dx
B 13 -0 i

B\Bg
because @y, |x| ¥ is integrable for any i = 1, ..., n. Integrating by parts yields
’ L fxie (e, v) kxi
|X dx = J. l L ldx = —J- — 4 j v
L\Bg o B\B;¢ |x[* |x|kJr2 ): 2 v |x[* B\B; |c[*+2

We have also

< w,, max . gn—k-1
n max ||

J' o (e, v)
op, %I

(here w,, stands for the (n — 1)-dimensional measure of the unit sphere in R"). It follows
that the latter integral converges to zero as € = 0 for n—k > 1 and may diverge for
n—k < 1if ¢(0) = 1. Thus, we have forn > k + 1:

kex;
f QL x| 7% dx =f —,fz
B ' B | |

It follows that in the made assumptions, Dy, (|x|™%) =

P |k+1 in the weak sense. This yields

that [D(|x| )| =

This function belongs to L? (B) for p(k + 1) < n.

|k+1

Summarizing, we conclude that |x|* € WP (B,(R)) if k <§— 1. The general inclusion

|x|* € W™P (B, (R)) follows by induction. m



