6. Sobolev spaces: elementary elliptic equations
6.1 Weak solutions of the Poisson equation

Now we are ready to demonstrate the usefulness of Sobolev spaces in some simple situations.
We start with weak solutions of the Poisson equation.

Let U is a bounded open subset of R™ and let us consider the Dirichlet problem for the Poisson
equation:

Au(x) = f(x), x €U
u(x) =0, x € dU.

Since we are interested in the zero boundary condition, it is reasonable to consider C;°(U) as the
class of test functions.

Let u be the classical solution of the above Dirichlet problem. Then multiplying the Poisson
equation by an arbitrary test function v € C;°(U) and integrating the obtained equality by
parts yields

_fu fvdx=fu Vu-Vvdx €Y)

The following remarks are appropriate to mention here:

(a) The latter identity may also be interpreted for any function u of a larger class Hé'Z(U).

(b) A bilinear form
(u.v):=f Vu - Vv dx
U

in the left hand side looks like a scalar product.

(c) The left hand side of (1) can be interpreted as a linear functional (actually, a distribution)

F(v):= —j fvdx (2)
u

and the scalar product (u, v) resembles then the Riesz representation theorem

(d) If f € L2(U), the linear functional F(v) defined above is bounded in L?(U)-norm for
subspace C;°(U) and moreover, we have

1/2
|F(v)| < (f f? dx)
U

that is F (v) extends (by Hahn-Banach theorem) to a bounded functional in H(}'z ).

1/2

( | v dx) = 1f 2 lvllz < UF N Il
U



We return to the scalar product (u, v) defined above. In fact, this bilinear form is well-defined in
the whole Hé'z(U), symmetric and positive there (notice that |u|, = 0 yields u = const, which
implies, by zero boundary condition, u = 0). Denote by

luly = v (w,w)

the associated norm.

Hence we arrive at a weak formulation of (1): given a function f € L?(U), any classical
solution u to the Poisson equation with zero boundary condition is a solution of the following
problem

(u,v) = F(v), Vv ey W), 3

where F is defined by (2). The following is then natural.

Definition. A function u € H&'Z(U) which solves (3) is called a weak solution to the Poisson
equation with zero boundary conditions.

In order to treat the existence of a weak solution we show that the new scalar product

generates the same metric (and topological) structure in Hé’z(U). We prove first an
auxiliary result.

6.2 Poincare’s inequality

Theorem (Poincare’s inequality)!. If U is a bounded open subset of R™ then there exists a
constant C = C(U) > 0 such that

j |Vv|?(x) dx = CJ. v2(x) dx
U

U

for all v € C}(U). Moreover, the inequality holds for any function in Hy*(U)

mDenote by the same letter v the function obtained by extending v by zero outside of U. Let
M be large enough such that the support of v is contained in the cube Q = {x: |x;| < M}.

. d . . ,
Notice that T Xk = 1, hence integrating by parts we find
k

axk

j v2(x) dx =f vi——dx = —ZJ- XV, dx < ZMf |vv,. |dx
ax k k

U Q k Q Q

2
Applying Cauchy inequality (fQ |vv,’ck|dx) < fQ vidx fQ v,’ckzdx we obtain

! Sometimes is called also the Fridrichs-Poincare inequality



Lf vzdx=if vzdx<f v, 2dx<j |Vv|? dx
aM? J, a2 J, =)y e =,

and the desired property follows.m

Remark 1. The question on the optimal constant in the Poincare inequality has many
relations to other problems in mathematics and mathematical physics. For instance, if one

think of U as a membrane then the best constant v/C in the Poincare inequality is exactly
the fundamental frequency A, (sometimes is called also the fundamental tone) of U.

If U = [0, L] is the one-dimensional interval then 4; = /L and the corresponding Poincare
inequality is called also Wirtinger’s inequality.

Besides the fundamental tone, one distinguish also a series of higher “tones” (see the first
picture below). The second picture shows the oscillating two-dimensional membrane
corresponding to the 7th tone v = sin 2x, sin 4x, in the rectangle U = [0,1] X [0,1].
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1/3

Remark 2. The above Poincare inequality is a partial case of a more general relation (the
so-called Poincare-Friedrichs inequality)

f |Vv|P(x) dx > ij vP(x)dx, Vv e C}{U)
U U

which can be proved by a similar argument.

Corollary 1. If U is a bounded open subset of R™ then there exists a constant C = C(U) > 0
such that for any v € Hy*(U)

||U||1,2 < C||vvll,

m Indeed, for any v € Hy*(U) Poincare’s inequality yields

Ioli2, = f, (V% + [v|Ddx < (14 CW)) [, IVvl2 dx = [v]? =



Corollary 2 (Existence and uniqueness of the weak solution). For any f € L*(U) there is a
unique function u € Hy”*(U) which solves (3).

m By Corollary 1 we have [[v]|, < C{|[Vv][, and, in the other direction,

|z = f Vvl dx < f (Vv[2 + [v[2)dx = |[v][2,.
U U

It follows that |u|; and |[u]|, , are equivalent norms.

On the other hand, F defined by (2) is a bounded linear functional in Hé'z (U). Hence, applying
the Riesz representation theorem to the new scalar product (u, v) we immediately conclude that
there is a unique function u € Hy”*(U) such that

F(v) = (u,v), Vv € Hé’z(U)

That is u is a weak solution to the Dirichlet problem formulated above. m

6.3 Existence of weak solutions for general elliptic equations

The method described above can be applied also to the Dirichlet problem for more general
elliptic equations. Consider a differential operator in divergence form

Lu = Zn g (aij(x) aa—;l> + c(x)u(x).
j

ij=10%;
where a;;(x) = a;;(x), a;;(x) € C*(U), c(x) € C*(U) and a;;(x) satisfying the (uniform)
ellipticity condition: there is a constant « > 0 such that for any £ € R"

Z" a;;(x) € = all€]l®.
,j=1

Repeating the argument in the previous section, we see that the following definition of a weak
solution is natural.

Definition. A function u € Hé‘z (U) which solves (3) is called a weak solution to Lu = 0 with
zero boundary conditions if

_fu frvdx = fU <Z:j=1 aij(x)g—;g—;— c(x)uv) dx, Yv € C;°(U). (4)

(minus before c(x) is due to the odd number of integrating by parts).
It is then convenient to restate the condition for a weak solution as follows:
F(v) = B(u,v), v € Cy°(U), (5

where F(-) s defined as before by formula (2) and the new bilinear form is given by



n du 0
B(u,v) = f <Z ' 1aij(x)a—;a—;— c(x)uv)) dx.
U ij= i 74

The existence of a weak solution will follow immediately if we show that B(u, v) is a scalar
product whose associated norm is equivalent to the standard norm in H(}'Z(U). So we need to
investigate under which conditions B (u, v) meets these criteria.

First we notice that B (u, v) is symmetric by our assumption on the coefficients a;;(x). Next, by
using of the ellipticity condition we obtain the following lower estimate:

Buw) > f (@lVaull? — yud)dx = allVallz — vllullZ,
U

where y = max{c(x): x € U}. Let us assume that
y = max{c(x):x e U} < aC

where C is the constant in the Poincare inequality. If y < 0 then B(u, u) = a||Vu||3, and if
y > 0 then

B(uwu) = allVull3 — yllull3 > (« — L) Ivuli3.
Applying then Corollary 1 we obtain
B(u,u) 2 C1||Vu||% = Czllu“iz

where C; and C, are some positive constants. The latter inequality is called also the coercive
condition.

Now, we notice that, by our assumption, functions |a;;(x)| and |c(x)| are continuous in U,
hence they are bounded there. Denoting by M the common upper bound we find

B(u,u) < M |lullf,
for all u € C°(U), and, consequently, for all u € Hy”*(U).

Summarizing, we conclude that B(u, v) is a symmetric bilinear form satisfying the bilateral
inequality

mllullf, < B(u,u) < M|lullf, (m,M > 0).

Let [ulp == /B(u,w). Then the new norm is equivalent to ||u||% . and we can again apply the
Riesz theorem to show that for any bounded linear functional F (v) there is a function u €
Hy# (U)such that equality (5) above holds.

Thus we have obtained

Theorem. In the made assumptions, the weak solution of Lu = 0 exists and is uniquely defined.



