
6. Sobolev spaces: elementary elliptic equations 

6.1 Weak solutions of the Poisson equation 

Now we are ready to demonstrate the usefulness of Sobolev spaces in some simple situations. 
We start with weak solutions of the Poisson equation.  

Let  is a bounded open subset of  and let us consider the Dirichlet problem for the Poisson 
equation: 
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The following remarks are appropriate to mention here: 

 function  of a larger class , . 

(b)  bilinear form 

, : ·   

in the left hand side looks like a scalar product. 

(c) he left hand side of  (1) can be interpreted as a linear functional (actually, a distribution)  

and the scalar product ,  resembles then the Riesz representation theorem 

(d) r functiona  for 
bs

,  

 
that is  extends (by Hahn-Banach theorem) to a bounded functional in , . 

 

Since we are interested in the zero boundary condition, it is reasonable to consider  as the 
class of test functions.  

Let  be the classical solution of the above Dirichlet problem. Then multiplying the Poisson 
equation by an arbitrary test function  and integrating the obtained equality by 
parts yields 

(a) The latter identity may also be interpreted for any
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, the linea l  defined above is bounded in -normIf 

su pace  and moreover, we have  
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We return to the scalar product ,  defined above. In fact, this bilinear form is well-defined in 
, nd po

|

the whole , symmetric a sitive there (notice that | | 0 yields , which 
implies, by zero boundary condition, 0). Denote by  

| ,  

the associated norm. 

weak formulation of (1): given a function , any classical 
son equation with zero boundary condition is a solution of the following 

where  is defined by (2). The following is then natural. 

i led a  solution to the Poisson 
n

hat the new 

are’s inequality)1.  If    is a bounded open subset of    then  there exists a 

for all  . Moreover, the inequality holds for any function in  ,  

Denote by the same letter  the function obtained by extending  by zero outside of . Let 
 be large enough such that the support of   is contained in the cube : | | . 

Hence we arrive at a 
solution  to the Pois
problem 
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efinit on. A function ,  which solves (3) is cal
quatio  w ndary conditions.
D
e

weak
ith zero bou  

 

n order to treat the existence of a weak solution we show t scalar product I
generates the same metric (and topological) structure in , . We prove first an 
auxiliary result. 

 

.2 Poincare’s inequality 

heorem (Poinc
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T
constant   such0  that  
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Notice that  1, hence integrating by parts we find 
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Applying Cauchy inequality    we obtain 

                                                 
1 Sometimes is called also the Fridrichs-Poincare inequality 
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 1. The question on the optimal constant in the Poincare inequality has many 
matics and mathema cal physics. For instance, if one 

est constant √

| |   

nd the desired property folla
 

 Remark
relations to other problems in mathe
hink of  as a membrane then the b

ti
t  in the inequality is exactly 

 

        

 

Remark 2. The above Poincare inequality is a partial case of a more general relation the 
‐called Poincare‐Friedrichs inequality   

| |   ,  

 

uality yields  

| | | 1 | |  | |     

 

 Poincare 
the fundamental frequency  sometimes is called also the fundamental tone  of .  

If 0,  is the one‐dimensional interval then /  and the corresponding Poincare
inequality is called also Wirtinger’s inequality.  

Besides the fundamental tone, one distinguish also a series of higher “tones” see the first 
cture belo illating tw

n the rec
pi w . The second picture shows the osc o‐dimensional membrane 
corresponding to the 7th tone sin 2 sin 4  i tangle 0,1 0,1 . 

  

so

which can be proved by a similar argument. 

Corollary 1. If    is a bounded open subset of   then there exists a constant  0 
such that for any   ,  

,

ny ,  Poincare’s ineq Indeed, for a

, |



Corollary 2 Existence iqueness of the weak solutio
unique function 

and un n . For any   there is a 
,  which solves (3). 

 By Corollary 1 we have ,  and, in the other direction, 

. Hence, applying 
rem to the new sc iately conclude that 

there is a unique function ,  such that  

,  

That is  is a weak solution to the Dirichlet problem formulated above.  

tions for g tic equations 

The method described above can be applied also to the Dirichlet proble or more general 
elliptic equations. Consider a diff ntial operator in divergence form 

 

| | | |   | | | | , . 

,  are equivalent nIt follows that | |  and orms.  

On the other hand,  defined by (2) is a bounded linear functional in ,

the Riesz representation theo alar product ,  we immed

, ,

 

6.3 Existence of weak solu eneral ellip

m f
ere

,
. 

 satisfying the (uniform) 

,

Repeating the argument in the previous section, we see that the following definition of a weak 
solution is natural. 

s  a weak solution to 0 with 
zero boundary conditions if  

 

where , ,  and  
ellipticity condition: there is a constant 0 such that for any  

.   

Definition. A function ,  which olves (3) is called

,
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 to the odd ). 

he co

by formula (2) and the new bilinear form is given by 

(minus before  is due  number of integrating by parts

It is then convenient to restate t ndition for a weak solution as follows: 
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where ·  s defined as before 



,
,

 . 

that ,  is a scalar 
product whose associated norm is equivalent to the standard norm in , . So we need to 

First we notice that ,  is symmetric by our assumption on the coefficients . Next, by 

,  , 

where max : . Let us assume that  

are ine , , and if 
0 then  

The existence of a weak solution will follow immediately if we show 

investigate under which conditions ,  meets these criteria. 

using of the ellipticity condition we obtain the following lower estimate: 

max :  

where  is the constant in the Poinc quality. If 0 then 

, . 

Applying then Corollary 1 we obtain  

, ,  

 and  are some positiv tter inequality is called also the coercive 
condition. 

| | are continuou
hence they are bounded there. Denoting by  the common upper bound we find 

,  ,   

for all , and, consequently, for all , .  

 is a symmetric bilinear form satisfying the bilateral 
inequality  

,

where e constants. The la

Now, we notice that, by our assumption, functions |  and | s in , 

Summarizing, we conclude that ,

, , ,             , 0 . 

Let | | . Then the new norm is equivalent to ,  and we can again apply the 
 th

Thus we have obtained 

In the made assumptions, the  solution of  0 exists and is uniquely defined. 

 

Riesz theorem to show that for any bounded linear functional ere is a function 
, such that equality (5) above holds.  

Theorem. weak


