7. Sobolev inequalities and embedding theorems
The simplest Sobolev imbedding theorem is the following (trivial) inclusion

Hy? () & 1P (U) €y
which follows immediately from general Poincare-Friedrichs inequality

vl < GlIVYll,
[t turns out that even this information can be made more precise if one takes into account
the dimension of the ambient space. There two distinguished cases: p < n and p > n. The
case p = n is also called critical.

We start with the sub-critical case:

Theorem 1(Sobolev inequality: p < n) Let U be a bounded domain in R™. Then
lvll,- < GlIvvll,, (2)

Here

N
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p

s the so-called critical Sobolev’s exponent and C,, depends only on p and n.

m The crucial step is to prove the Sobolev inequality for
The first case p = 1.

Notice that it suffices only to prove (2) for test functions, thatis v € C;°(U). We extend any
given v € Cy°(U) by zero to the whole R™ and shall denote for any index 1 < i <nanda
pointy € R"

L;(y) = {x € R"|x; = y;}, Lij(y) = {x € R"|x; = y;,x; = y;} etc.
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Since v € C;°(U) we have for any index i:
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Here and in what follows in the proof we use the shorthand

Vi
j Ve, (V1s ooes Xy o, Y )X

Ll(y) = Li! hi = j |V'l7|, hl] = h]dxl = j |VU|, etc.
L L; Li®L;

i

(the latter integrals should be understood as line, surface integrals with respect to the
corresponding measure). Notice also that h; does not depend on y;, h;; does not depend on

Yi,y; and so on.
And after multiplication over alli = 1,2, ...,n
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Thus, integrating (3) over L;(y) and applying the Holder inequality gives
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Writing the last product as

and integrating over L, (y) (recall that h;, does not depend on y; and y,) with application
the Holder inequality yields
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Applying this argument, we obtain easily by induction that forany k <n —1
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Hence for k = n — 1 we have

1
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Integrating this inequality over L,, and taking into account that h) does not depend

12 n-1n
on y, and that R" = L,, ,,we find
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So we have proved the Sobolev inequality for p = 1.

The second case: 1 <p < n.

Now, let us denote by w = |v|*, where s > 0 and v € C;°(R"). It is easy to see that
w € Cy°(R™). Hence applying the Sobolev inequality for p = 1 to w and then the Holder
inequality, we get
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j |v|n=1 = j |w|n=1 S] |[Vw| = sj [v|$~1|Vy| <
R™ R™ R R”

(by Holder’s inequality)
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Let us choose s so that
sn_ (s—Dp
n-1 p-1"~

_(7711—_1;;9' Then we find for this value of s:
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which is equivalent to the required inequality

thatis s =

vl en < s ||V,

The theorem is proved. m

Corollary 1 (Sobolev embedding theorem for p < n). Let U be a bounded domain in R™ .
Then for p <n

np
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and the embedding continuous in the sense that the following inequality true:

lvllg < Gllvlly, p<g<p~



m Proof: apply the Holder inequality. m

In other words, taking into account inequality p*

(recall that U is a bounded domain):

.. c Co(0) € L*(U) © HP(U) cil?" (U) c LA(U) c LP(U); c L1(U) (q = p).
* _ pz _ ﬁ
p—pP= n-p n

Finally we prove the super-critical case of the Sobolev inequality.

Theorem 2(Sobolev inequality: p > n) Let U be a bounded domain in R™. Then
1,p 0,1_2 —
Hy"(U)cc™ »), p>n.

Moreover, the embedding i: Hé’p(U) o C0’1_5(U) is continuous in the sense that the following
inequality true:

lv(x) —v()|
—1_2 < C(U;nlp)llvv"p
lx—yl" P

The latter is called Morrey’s inequality.

m We consider v € C;°(U) and extend it by zero outside U so that v € C,°(R™). For any
lx=y|.

fixed pair of points x, y € U we denote by B the ball centered at HTy of radius R =

The points of segment [x, z] can be parameterized by: x + t(z — x), when t € [0,1]. We
have

v(z) —v(x) = fol%v(x +t(z —x))dt < fO1|Vv(x +t(z —x))| |z — x|dt



Integrating the obtained inequality over all points z € B and dividing by the measure of the
ball |B| = Q,R™ (here {,, stands for the n-dimensional volume of the n-dimensional unit
ball) gives
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fv(z) dz —v(x) < flz—xl dz f |Vv(x+t(z—x))| - dt
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We have also |z — x| < 2R for any z in the ball B. Hence, passing to the absolute values and
applying Fubini’s theorem we find
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f v(2) dz — v(x)
B

Applying the (linear) change of variables ¢ (z) = x + t(z — x) with Jacobian Z—Z, =t""we

obtain for the inner integral:
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jB |Vo(x + t(z — x))| dz = jB’ IVv(E)Id—E dé = o 5 |Vv(8)]| dé <

by the Holder inequality
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Here we used the fact that B’ = £(B) is a ball of radius tR. The substitution of the found
relations into (5) implies
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Notice that for p > n the integral fol t rdt converges, so that we find (recalling that
1
R=1lx—y])

)
la —v()| <G lx—y| P|Vvl,

and changing the rolesx < y:
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where a = ) 5 v(z) dz. Applying the triangle inequality to the last two inequalities we

1
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arrive at

() — v < la— v + la — v < Cs 1x — y[* 7 Vol

The theorem is proved. m



