Maximum principles
Some motives:

e Linear functions on [a, b] € R': solutions of differential equation u"'(x) = 0
e Convex functions: if smooth then it is defined as a solution of inequality u"' (x) = 0,
otherwise satisfy the structural condition:

u(xt+y(1-1)) <xu@x)+ (A -uly), Vte[0l], VxyE€E]lab]

v

For all these examples the following version of the (weak) maximum principle holds:

sup f (x) = max f (x)

xeU
Moreover, for these examples the following (strong) maximum principle holds:
if xy € [a, b] is an inner point then

e either f = const
o orf(x) < maxyepy f(x)

Higher-dimensional analogues

e linear functions — harmonic functions (solutions of Af(x) = 0) satisfy the mean-

value property
1

1B, (R)| J5,(r)

f(x)dx = f(y), where B, (R) = {x € R™: |[x —y| < R}

in particular, the strong maximum principle also holds
e convex functions — subharmonic functions (solutions of Af(x) = 0) satisfy the

mean-value property
1

S dx > ,
15, )| By(R)f(x) x = f(y)



The maximum principle in the above sense depends on point-wise properties of a function,
that is it requires some regularity the function. For example, it is meaningless for LP-classes
in the above form.

Some historical remarks:

e For harmonic and subharmonic functions was known to Gauss on the basis of the
mean value property (1839)

e An extension to elliptic equations and inequalities remained open until the 20t
century: S.N. Bernstein (1904) and E. Picard (1905) obtained various results by
using analyticity or higher regularity assumptions

e E.Hopf(1927) a transparent and powerful approach which gave an enormous
number of applications in many further directions

e Many modifications like comparison (touching) principle are very useful in
connection to various geometrical problems (curvature estimates etc.)

We discuss briefly the basic maximum principles for (sub-, super-)solutions of elliptic type
PDEs, for instance, linear operators having the form

n
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Lu = Z Ajj Uy T Z b; uy, + cu
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ij=1

In this case we always assume that all coefficients are (symmetric) continuous functions:
a;;(x) = a;;(x), a;;(x) € C°(U), b;(x),c(x) € C°(U) and a;;(x) satisfying the (uniform)
ellipticity condition:

There is a constant ¢ > 0 such that for any £ € R"
n
D a0 = alil
i,j=

Remark. A function satisfying Lu > 0 (Lu < 0 respectively) is called a supersolution
(subsolution respectively).

Weak maximum principle
Theorem. Assume thatu € C>(U)NC(U)andc = 0inU.IfLu = 0 in U then
g () = g e
Proof. Let us first suppose that we have a strict inequality Lu > 0 in U and yet there exists

a point x, € U with max,¢g u(x) =u(x,). Then x, is an inner maximum point, that is we
have the following necessary conditions:



Du(xy) =0
and

D?u(x,) < 0.

n
Since the matrix A = (ai 1 (xo)) is symmetric and positive definite, there exists an
ij=1

orthogonal matrix A = (4;;) such that
AANT = diag (dy, d,, ..., d,), d, > 0.
Then we have for any y = xy + A(x — x,) we have
x —x =Ny —x9) = AT (y — x0)

so that

j— ! 14 —_ 14
Up; = z Uy ik » Uxixj = Z Uyyi i

1<ksn 1<k,lsn
Hence at the point x,
17 _ 17 _ 17
z AijUxx; = ukaLaifAikAﬂ - Z dkuykyk
1<i,j<n 1<k,lsn 1<i,jsn 1<ksn

(since }.;j a;jAigAj; = dyOy;). Moreover, we have d, > 0 and uy,

YKkYk
— § "
Lu = aijuxl.xj <0

1<i,j<n

(x0) < 0, hence

that contradicts our assumption Lu > 0. Thus, the first case is proved.
Now return to the weak inequality Lu > 0. We introduce an auxiliary function
u(x) = u(x) + teM*, x €U,M > 0.
The uniform ellipticity implies a;;(x) = a > 0.
Therefore,
Lu, = Lu+ t L(eM*) > 0 + t eM*1(M?a,; + b;M) = Mt eM*1(Ma — ||b;]|) > 0

in U for M large enough. According to previous step we have for any t > 0:

g e () = g e
Now we let t — 0 +, so that we obtain as the limit relation

g o () = g o)

where u, = u and the required property follows.



Corollary. (Weak maximum principle for ¢ < 0) Assume that c < 0 and Lu = 0in U. Then
max u(x) < maxut(x),
x€U x€dU

where ut = max{u, 0}. If Lu = 0 then

max |[u(x) | < max |u(x)|.
max [u(x) | < max u(x)|

Proof. If u < 0 in U then our statement is trivial. Let us assume now that the set
V ={xeU|lulx) >0}
is non-empty. Then
Ku=Lu—cu=0, x€eV.

On the other hand, we can apply the previous theorem to our new operator K since it
contains no zero-term (c-term). We have (see picture)

— — +
maxu(x) =maxu(x) = maxu (X
xX€EV ( ) x€IV ( ) XEQU ( )

V:u>0

In order to prove the second statement one has to apply the previous result to (-u). m

Strong maximum principle

Theorem (Hopf's lemma, 1927) Assume thatu € C*(U) N C*(U) and ¢ = 0 in U. Suppose
further that Lu > 0 in U and that there exists a point x, € dU such that

u(xg) > u(x), forall x € U.

Assume also that U is regular at x in the sense that there exists an open ball B c U with
Xy € OB (this condition is called the interior ball condition). Then

] . .
o a—: (xo) > 0, where v is the outward unit normal to B at x,,

e ifc < 0 then the same conclusion holds provided u(x,) = 0.



Remark. A weak inequality 3‘3 (x¢) > 0 is trivial and follows immediately from usual

: D : I )
maximum property, so that significance of the theorem is the strict inequality % (x9) > 0.

Corollary (Strong maximum principle). Let U be a connected open set and u € C?(U) N
C(U) be a solution of Lu > 0 in Uwith ¢ = 0 in U. If u attains its maximum over U at some
interior point, then u = const in U.

Proof (of Corollary). Write M = max u and consider the level set
E={xeU|lulx) =M}

Then if u # M then we can consider the set
V={xeU]|ulx) <M}

Choose a point y € V satisfying

dist(y, E) < dist(y, aU)

and denote by B the largest ball with center y whose interior lies in V. Then there exists
some point x, € E N dB. Clearly, V satisfies the interior ball condition at x,, whence Hopf’s

. . Ou . c . . L. .
Lemma implies ™ (x9) > 0. But This is a contradiction since u attains its maximum at x,

(that is we have Du(x,) = 0).

Proof of Hopf's Lemma

Assume first that ¢ < 0 and u(x,) = 0. Without loss of generality, B = B,(r), for some
radius r > 0. Define

v(x) = e~AxI? _ g=ar? x € By(R), A>0.

Then using the uniform ellipticity condition, we find

n n

Lv = Z a;j v,’c’l.xj + z b; vy, + cu

ij=1 i=1



n n
= el Z a;j (42%x; xj — 218, ) — 22e AP Z by x; + c(eA¥* — =)

i,j=1 i=1
> e A (4022 |x|2 — 22 tr (A) — 24b - |x| + ¢)
(recall that ¢ < 0, hence —ce " > 0), where b = sup,cg m
Consider the open annular region B, (r) \ B, G) We have
Lv > e M (a222r2 — 20 tr (A) — 2Abr +¢) >0
if A is chosen large enough. Hence Lv > 0 in By(r) \ B, (g)

In view of our condition u(x,) > u(x) we can find a constant € > 0 such that

r
u(xy) = ulx) + e v(x), X € 0B, (E)

In addition we have (since v = 0 on dB,(r))
u(xy) = ux) + e v(x), X € dBy(1)

Thus, applying Lu = 0 and Lv > 0, we see

L(u +ev — u(xo)) > —cu(xy) =0, x € By(r) \ By (g)

From (*) and (**) we have

u(x) +ev(x) —ulx) <0 on 9 <Bo(r) \ Bo 6))

By virtue of weak maximum principle we obtain that that latter inequality holds
everywhere in By(7) \ B, (g) But

u(x) + € v(xp) —ulxe) =0
and so we have the normal derivative
0< 61,( ulx) + evix) — u(xo))lxo = d,u(xy) + € d,v(xg)

[t follows that

€
u(xo) 2 —€d,v(xo) = —;Dv(xo) - Xp = 2der e > 0.



