

Nomenclature:

$$V \subset\subset U$$

$$d(V,\partial U) \coloneqq \operatorname{dist}(V,\partial U)$$

$$D_j^h u(x) = \frac{u(x+he_j)-u(x)}{h}, \qquad x \in V, \qquad |h| < d(V,\partial U).$$

$$D^h u = (D_1^h u, \dots, D_n^h u)$$

- in general, $D_j^h u(x)$ is well defined almost everywhere in V
- D_j^h is a linear operator: $L^1(V) \to L^1(U)$
- D_j^h can be thought of as an approximation of partial derivative ∂_{x_j}

Integration by parts: For any $\varphi \in C_0^\infty(V)$ and all $h, 0 < |h| < d(\text{supp } \varphi, \partial U)$

$$\int_{U} u D_{i}^{h} \varphi \ dx = -\int_{U} \varphi \ D_{i}^{-h} u \ dx$$

■ ("Extended version" of Proof). Denote by $V = \operatorname{supp} \varphi$. Then

$$\int_{U} u \, D_{i}^{h} \varphi \, dx = \frac{1}{h} \int_{U} u(x) \varphi(x + he_{j}) dx - \frac{1}{h} \int_{U} u(x) \varphi(x) dx$$

$$= \frac{1}{h} \int_{V - he_{j}} u(x) \varphi(x + he_{j}) dx - \frac{1}{h} \int_{V} u(x) \varphi(x) dx$$

$$= \frac{1}{h} \int_{V} u(y + he_{j}) \varphi(y) dy - \frac{1}{h} \int_{V} u(x) \varphi(x) dx$$

$$= \int_{V} \varphi(x) \left(\frac{u(x - he_{j}) - u(x)}{h} \right) dx$$

$$= -\int_{U} \varphi \, D_{i}^{-h} u \, dx . \blacksquare$$

Leibniz rule. For any two admissible functions the following (if well-defined) holds

$$D_k^h(uv) = u^h D_k^h(v) + D_k^h(u)v,$$

Here $u^h(x) = u(x + he_k)$.

Lemma 1. If $1 \le p < \infty$ and $u \in H^{1,p}(U)$ then for each $V \subset \subset U$

$$||D^h u||_{L^p(V)} \le C ||D u||_{L^p(U)}$$

for some constant C = C(n, p) and all $0 < |h| < \text{dist } (V, \partial U)$.

Proof (Extended version).

Assume first that u is smooth. Then for any $x \in V$ and $0 < |h| < \text{dist}(V, \partial U)$

$$u(x + he_i) - u(x) = h \int_0^1 u'_{x_i}(x + the_i) dt$$

so that

$$|D_i^h u(x)| = \frac{|u(x + he_i) - u(x)|}{|h|} \le \int_0^1 |Du(x + the_i)| dt$$

Then

$$|D^{h}u(x)|^{p} = \left(\sum_{i=1}^{n} |D_{i}^{h}u(x)|^{2}\right)^{\frac{p}{2}} \le n^{\frac{p}{2}} \left(\max_{1 \le i \le n} |D_{i}^{h}u(x)|\right)^{p} \le n^{\frac{p}{2}} \sum_{i=1}^{n} |D_{i}^{h}u(x)|^{p}$$

$$\le n^{\frac{p}{2}} \sum_{i=1}^{n} \left(\int_{0}^{1} |Du(x+the_{i})| dt\right)^{p} \le n^{\frac{p}{2}} \sum_{i=1}^{n} \int_{0}^{1} |Du(x+the_{i})|^{p} dt$$

$$\le n^{\frac{p}{2}} \sum_{i=1}^{n} \int_{0}^{1} |Du(x+the_{i})|^{p} dt$$

Integration over *V*:

$$\int_{V} |D^{h}u(x)|^{p} dx \leq n^{p/2} \sum_{i=1}^{n} \int_{V} dx \int_{0}^{1} |Du(x+the_{i})|^{p} dt = n^{p/2} \sum_{i=1}^{n} \int_{0}^{1} dt \int_{V} |Du(x+the_{i})|^{p} dx$$

Thus

$$\int_{V} |D^{h}u|^{p} dx \le n^{p/2} \int_{U} |Du|^{p} dx$$

This estimate holds for smooth u, hence it is valid by approximation for arbitrary $u \in H^{1,p}(U)$ and the lemma follows for $C = n^{p/2}$.

Lemma 2. If $u \in L^p(U)$ for $1 and for some <math>V \subset \subset U$ there exists a constant C such that for all $0 < |h| < \operatorname{dist}(V, \partial U)$ the inequality holds

$$||D^h u||_{L^p(V)} \le C$$

Then $u ∈ H^{1,p}(V)$ and

$$||Du||_{L^p(V)} \le C_1 = C_1(n, p, C).$$

Proof. Consider $h_j = \frac{d}{i}$, where $d = \frac{1}{2} \operatorname{dist}(V, \partial U)$.

- $\bullet \quad \left\|D^{h_j}u\right\|_{L^p(V)} \leq C \quad \Rightarrow \quad \text{ for any fixed } i=1,2,\dots,n \text{, the family } \left\{D_i^{h_j}u\right\}_{j=1,2,\dots}$ is bounded in $L^p(V)$ -sense.
- In a reflexive Banach space (that is $X^{**} = X$) any bounded set is weakly compact
- Since p > 1 $\Rightarrow L^{p^*} = L^q \left(\frac{1}{p} + \frac{1}{q} = 1 \right)$ $\Rightarrow L^p$ -space is a reflexive Banach space, hence a bounded sequence in $L^p(V)$ is weakly compact
- Thus (for any index $i \le n$) we can find a subsequence $h_k \to 0$ ($h_k \equiv h_{j_k}$) and a function $v_i \in L^p(V)$ such that

$$D_i^{h_k} u \xrightarrow{\text{weakly in } L^p(V)} v_i.$$

• This, in its turn, means that for any $g \in L^q(U) \equiv L^p(V)^*$ we have

$$\lim_{k\to\infty}\int_V g\,D_i^{h_k}u\,dx\,=\int_V gv_i\,dx\,.$$

• Since $C_0^{\infty}(V) \subset L^q(U)$, for any $\varphi \in C_0^{\infty}(V)$

$$\lim_{k \to \infty} \int_{V} \varphi \, D_i^{h_k} u \, dx = \int_{V} \varphi \, v_i \, dx$$

• Integration by parts (in the version for difference quotients) yields

$$\int_{U} \varphi \, D_i^{h_k} u \, dx = -\int_{U} u \, D_i^{-h_k} \varphi \, dx$$

Thus

$$\int_{V} \varphi v_{i} dx = \lim_{k \to \infty} \int_{V} \varphi D_{i}^{h_{k}} u dx = -\lim_{k \to \infty} \int_{U} u D_{i}^{-h_{k}} \varphi dx$$

• But $D_i^{-h_k} \varphi \rightrightarrows \varphi_{x_i}$ (converges uniformly in U as $k \to \infty$), hence

$$\lim_{k \to \infty} \int_{U} u \, D_{i}^{-h_{k}} \varphi \, dx = \int_{U} u \varphi_{x_{i}} \, dx = \int_{V} u \varphi_{x_{i}} \, dx$$

• It follows that

$$\int_{V} u \varphi_{x_{i}} dx = -\int_{V} \varphi v_{i} dx$$

- This proves that v_i is the weak derivative of u with respect to x_i in V, in particular, $v_i \in L^p(V)$
- Thus the weak gradient $Du \in L^p(V)$. Since u is itself in $L^p(V)$, we deduce therefore that $u \in H^{1,p}(V)$.
- Finally, setting $g = v_i^{\frac{p}{q}} \in L^q(V)$ in

$$\lim_{k\to\infty}\int_V g\ D_i^{h_k}u\ dx\ =\int_V gv_i\ dx$$

we obtain (notice that $1 + \frac{p}{q} = p\left(\frac{1}{p} + \frac{1}{q}\right) = p$)

$$\int_{V} v_{i}^{\frac{p}{q}} v_{i} dx \equiv \int_{V} v_{i}^{p} dx = \lim_{k \to \infty} \int_{V} v_{i}^{\frac{p}{q}} D_{i}^{h_{k}} u dx \le$$

$$\leq \left(\int_{V} v_{i}^{p} dx \right)^{\frac{1}{q}} \limsup_{k \to \infty} \left(\int_{V} \left| D_{i}^{h_{k}} u \right|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq C^{1/p} \left(\int_{V} v_{i}^{p} dx \right)^{\frac{1}{q}}$$

Hence, dividing we obtain

$$\int_{V} v_i^p \ dx \le C$$

which yields the required estimate of the weak gradient:

$$||Du||_{L^p(V)} \le C_1(n,p)C$$

The lemma is proved completely. ■

Inner regularity for $Lu \equiv -\sum_{i,j=1}^n a_{ij} u''_{x_ix_j} + \sum_{i=1}^n b_i u'_{x_i} + cu = f$

Structure conditions: $a_{ij}(x) = a_{ji}(x)$ and

$$a_{ji}(x) \in C^1(U), \qquad b_i(x), c(x) \in L^\infty(U), \qquad f \in L^2(U).$$

The uniform ellipticity: there is a constant $\alpha > 0$ such that for any $\xi \in \mathbb{R}^n$ and all $x \in U$

$$\sum\nolimits_{i,j=1}^{n}a_{ij}(x)\,\xi_{i}\xi_{j}\geq\alpha\|\xi\|^{2}.$$

Main Theorem. Let $u \in H^{1,2}(U)$ be a weak solution of Lu = f.

Then $u \in H^{2,2}_{loc}(U)$ and for any open subset $V \subset\subset U$ the following estimate holds:

$$||u||_{H^{2,2}(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}).$$

Here C = C(L, U, V).

Corollary. We have the classical identity

$$Lu = f$$
 a. e. in U

Indeed, for any function $v \in C_0^{\infty}(U)$ we have the weak identity

$$B(u,v)=(f,v).$$

On the other hand, since $u \in H^{2,2}_{loc}(U)$ we can integrate by parts the left hand side:

$$B(u, v) = (Lu, v).$$

Thus (Lu - f, v) = 0 for all $v \in C_0^{\infty}(U)$, and so Lu = f a.e. in U.

Proof of the Main Theorem. We choose arbitrarily some open set *W* such that

$$V \subset\subset W \subset\subset U$$

and select some smooth function $\zeta(x)$ satisfying

$$0 \le \zeta \le 1$$
, $\zeta = 1$ on V and $\zeta = 0$ on $\mathbb{R}^n \setminus W$.

Such a function is called a *cutoff function*.

Since u is a weak solution we have B(u,v)=(f,v) for all $v\in H_0^{1,2}(U)$, hence

$$\sum_{i,j=1}^{n} \int_{U} a_{ij} u'_{x_i} v'_{x_j} dx = \int_{U} \tilde{f} v dx, \qquad \tilde{f} \coloneqq f - \sum_{i=1}^{n} b_i u_{x_i} - cu \in L^2(U)$$
 (*)

• For any an index $k \le n$ consider the test function

$$v = -D_k^{-h}(\zeta^2 D_k^h u)$$

- $v \in H_0^{1,2}(U)$ for small h
- We have

$$A := \sum_{i,j=1}^{n} \int_{U} a_{ij} u'_{x_i} v'_{x_j} dx = \int_{U} \tilde{f} v dx =: B$$

1) *Estimate of A.* Integration by parts and Leibniz rule (in the difference quotients versions) yield:

$$A = -\sum_{i,j=1}^{n} \int_{U} a_{ij} u'_{x_{i}} \left(D_{k}^{-h} (\zeta^{2} D_{k}^{h} u) \right)'_{x_{j}} dx =$$

$$= \sum_{i,j=1}^{n} \int_{U} D_{k}^{h} (a_{ij} u'_{x_{i}}) (\zeta^{2} D_{k}^{h} u)'_{x_{j}} dx =$$

$$= \sum_{i,j=1}^{n} \int_{U} a_{ij}^{h} D_{k}^{h} (u'_{x_{i}}) (\zeta^{2} D_{k}^{h} u)'_{x_{j}} dx + \int_{U} u_{x_{i}} D_{k}^{h} (a_{ij}) (\zeta^{2} D_{k}^{h} u)'_{x_{j}} dx$$

Here $a_{ij}^h(x) = a_{ij}(x + he_k)$. Expanding the derivative $\left(\zeta^2 D_k^h u\right)_{x_j}'$ we obtain

$$A = A_1 + A_2$$

where

$$A_{1} = \sum_{i,j=1}^{n} \int_{U} a_{ij}^{h} \zeta^{2} D_{k}^{h} (u_{x_{i}}^{\prime}) D_{k}^{h} (u_{x_{j}}^{\prime}) dx$$

and

$$A_{2} = \sum_{i,j=1}^{n} \int_{U} \left[2\zeta \zeta_{x_{j}}' a_{ij}^{h} D_{k}^{h} \left(u_{x_{i}}' \right) D_{k}^{h} (u) + \zeta^{2} D_{k}^{h} \left(a_{ij} \right) u_{x_{i}} D_{k}^{h} \left(u_{x_{j}}' \right) + 2\zeta \zeta_{x_{j}}' u_{x_{i}} D_{k}^{h} \left(a_{ij} \right) D_{k}^{h} (u) \right]$$

By uniform ellipticity,

$$A_1 \ge \alpha \int_U \zeta^2 \sum_{i=1}^n \left(D_k^h \left(u_{x_j}' \right) \right)^2 dx \equiv \alpha \int_U \zeta^2 |D_k^h (Du)|^2 dx$$

Moreover, we have for some appropriate $C = C(a_{ij}, b_i, c, \zeta') > 0$ from boundedness of the coefficients of L:

$$|A_2| \le C \int_U \zeta(|D_k^h Du| \cdot |D_k^h u| + |D_k^h Du| \cdot |Du| + |D_k^h u| \cdot |Du|) dx$$

Applying Cauchy's inequalities

$$C\zeta |D_k^h Du| \cdot |D_k^h u| \le \frac{\epsilon}{2} |\zeta^2| |D_k^h Du|^2 + \frac{C^2}{2\epsilon} |D_k^h u|^2,$$

$$C\zeta |D_k^h Du| \cdot |Du| \le \frac{\epsilon}{2} |\zeta^2| |D_k^h Du|^2 + \frac{C^2}{2\epsilon} |Du|^2,$$

$$C\zeta |D_k^h u| \cdot |Du| \le \frac{C\zeta}{2} |D_k^h u|^2 + \frac{C\zeta}{2} |Du|^2,$$

Notice that

if
$$\epsilon < C$$
 then $\frac{c}{2} < \frac{C^2}{2\epsilon}$

Thus, taking into account that $\zeta \leq 1$ everywhere and $\zeta = 0$ in $\mathbb{R}^n \setminus W$ we get

$$|A_2| \le \epsilon \int_W \zeta^2 |D_k^h Du|^2 dx + \frac{C^2}{\epsilon} \int_W \left(|D_k^h u|^2 + |Du|^2 \right) dx$$

Now choose additionally $\epsilon < \frac{\alpha}{2}$ and apply the integral estimate for difference quotients (Lemma 1 above)

$$\int_{W} |D_{k}^{h}u|^{2} dx \leq C_{1} \int_{U} |Du|^{2} dx , \qquad C_{1} = C_{1}(n, p).$$

Thus we arrive at

$$|A_2| \le \frac{\alpha}{2} \int_W \zeta^2 |D_k^h Du|^2 dx + C_2 \int_U |Du|^2 dx$$
, $C_2 = \frac{C^2}{\epsilon} (1 + C_1)$.

These two estimates for A_k imply together

$$A \geq \frac{\alpha}{2} \int_{W} \zeta^{2} \left| D_{k}^{h} D u \right|^{2} dx - C_{2} \int_{U} |D u|^{2} dx.$$

2) Estimate of B. Applying Lemma 1 to v we find

$$\int_{U} v^{2} dx = \int_{W} v^{2} dx \equiv \left\| D_{k}^{-h} (\zeta^{2} D_{k}^{h} u) \right\|_{L^{2}(W)}^{2} \le C_{1} \int_{U} \left| D(\zeta^{2} D_{k}^{h} u) \right|^{2} dx$$

Here $D_{x_k}(\zeta^2 D_k^h u) = 2\zeta \zeta'_{x_k} D_k^h u + \zeta^2 (D_k^h u)'_{x_k}$, hence for some $C_3 = C_3(\zeta)$

$$\left|D\left(\zeta^2 D_k^h u\right)\right|^2 \leq C_3 \left(\left|D_k^h u\right|^2 + \zeta^2 \left|D_k^h D u\right|^2\right)$$

and integration together with application of Lemma 1 to $D_k^h u$ gives

$$\int_{U} v^{2} dx \leq C_{4} \int_{W} \left(\left| D_{k}^{h} u \right|^{2} + \zeta^{2} \left| D_{k}^{h} D u \right|^{2} \right) dx \leq C_{5} \int_{W} \left(\left| D u \right|^{2} + \zeta^{2} \left| D_{k}^{h} D u \right|^{2} \right) dx,$$

Appling again the above trick with Cauchy's inequality we find

$$|B| \le C \int_{U} (|f| + |Du| + |u|)|v| \, dx \le$$

$$\le \epsilon \int_{U} |v|^{2} dx + \frac{C_{6}}{\epsilon} \int_{U} (|f|^{2} + |Du|^{2} + |u|^{2}) \le$$

$$\le C_{5} \epsilon \int_{W} \zeta^{2} |D_{k}^{h} Du|^{2} + C_{7} \int_{U} (|f|^{2} + |Du|^{2} + |u|^{2})$$

For $\epsilon = \frac{\alpha}{4C_5}$ this finally yields

$$|B| \le \frac{\alpha}{4} \int_{U} \zeta^{2} |D_{k}^{h} Du|^{2} + C_{7} \int_{U} (|f|^{2} + |Du|^{2} + |u|^{2})$$

Recalling that A = B we obtain

$$\frac{\alpha}{4} \int_{U} \zeta^{2} \left| D_{k}^{h} D u \right|^{2} \le C_{8} \int_{U} (|f|^{2} + |D u|^{2} + |u|^{2})$$

The first integral may be estimated from below since $\zeta = 1$ on V:

$$\int_{V} \left| D_{k}^{h} D u \right|^{2} \leq C_{9} \left(\| f \|_{L^{2}(U)}^{2} + \| u \|_{L^{2}(U)}^{2} + \| D u \|_{L^{2}(U)}^{2} \right) = C_{9} \left(\| f \|_{L^{2}(U)}^{2} + \| u \|_{H^{1,2}(U)}^{2} \right)$$

This uniform bound for $\left\|D_k^h Du\right\|_{L^2(V)}$ by Lemma 2 implies regularity of Du:

$$Du \in H^{1,2}(V) \implies Du \in H^{1,2}_{loc}(U),$$

and therefore $u \in H^{2,2}_{loc}(U)$ and

$$\|u\|_{H^{2,2}(V)}^2 \equiv \|u\|_{L^2(V)}^2 + \|Du\|_{L^2(V)}^2 + \|D^2u\|_{L^2(V)}^2 \leq C(L,V,U) \cdot \left(\|f\|_{L^2(U)}^2 + \|u\|_{H^{1,2}(U)}^2\right)$$

3) In order to achieve the required L^2 -norm of u in the latter estimate we notice that the above argument also yields

$$||u||_{H^{2,2}(V)} \le C_1(L, V, W) \cdot (||f||_{L^2(W)} + ||u||_{H^{1,2}(W)})$$

By choosing a new cutoff function

$$v = \zeta^2 u$$
, $\zeta = 1$ on W

and applying formula (*) together the uniform ellipticity, one can prove that

$$\int_{U} \zeta^{2} |Du|^{2} dx \le C \int_{U} (f^{2} + u^{2}) dx \tag{**}$$

Indeed,

$$\sum_{i,j=1}^{n} \int_{U} a_{ij} u'_{x_i}(\zeta^2 u)'_{x_j} dx = \int_{U} \tilde{f} \zeta^2 u dx$$

Here

$$\sum_{i,j \leq n} a_{ij} u'_{x_i} (\zeta^2 u)'_{x_j} = \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \geq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} + \zeta^2 a_{ij} u'_{x_i} u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \leq \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} = \alpha \zeta^2 |Du|^2 + \sum_{i,j \leq$$

This yields

$$\alpha \int_{U} \zeta^{2} |Du|^{2} dx \leq \int_{U} \tilde{f} \zeta^{2} u dx - \int_{U} \sum_{i,j \leq n} 2\zeta \zeta'_{x_{i}} a_{ij} u u'_{x_{j}} dx$$

We have as above

$$\tilde{f}\zeta^2 u = \left(f - \sum_{i=0}^{n} b_i u_{x_i} - cu\right) \zeta^2 u \le \epsilon \zeta^2 |Du|^2 + C_{10}(\epsilon)(f^2 + u^2)$$

and

$$\sum_{i,j \le n} 2\zeta \zeta'_{x_i} a_{ij} u u'_{x_j} \le \epsilon \zeta^2 |Du|^2 + C_{11}(\epsilon) u^2$$

Combining these estimates we obtain the required inequality. It implies finally that

$$||u||_{H^{1,2}(W)} \le C(L, V, W) \cdot (||f||_{L^2(U)} + ||u||_{L^2(U)})$$

The theorem is proved completely. ■