Nomenclature:
VccU
d(V,aU) = dist (V,0U)
ulx + he;) — u(x
Dl'u(x) = ( sz) ( ), x €V, |hl <d(V,aU).

D"u = (DM, ..., DI'u)

e ingeneral, Djhu(x) is well defined almost everywhere in V

. Djh is a linear operator: L*(V) - L'(U)

°  can be thou of as an approximation of partial derivative d,,.
D/* can be thought of pp tion of partial d tive 0y,

Integration by parts: For any ¢ € C;°(V) and all h, 0 < |h| < d(supp ¢, dU)
juDih<pdx = —f(le-—hudx
U U
m (“Extended version” of Proof). Denote by VV = supp ¢. Then
h 1 1
uD'pdx =— u(x)<p(x + hej)dx —— | u(x)p(x)dx
U hly hly

1 u(x)p(x + he;)dx — %fu(x)(p(x)dx
v

B h V—hel-

_ 1 h d 1 d

- f u(y + he)p()dy - 7 f U@ (x)dx
— he;) —

=fv¢(x)<u(x e;l) u(x)>dx

=—']-(pDi"hudx.l
U

Leibniz rule. For any two admissible functions the following (if well-defined) holds
D (uv) = u"DP(v) + D (W,

Here u"(x) = u(x + hey).
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Lemma1.If 1 < p < o andu € H'?(U) then for eachV cc U
ID™ullp oy < C IDUll Lo (1)

for some constant C = C(n,p) and all 0 < |h| < dist (V,dU).

Proof (Extended version).

Assume first that u is smooth. Then for any x € V and 0 < |h| < dist (V,dU)

1
u(x + he;)) —u(x) = hj uy, (x + the;) dt
0

so that
u(x + he;) —u(lx 1
|Dl-hu(x)| = [u( l;j @l Sf |Du(x + the;)| dt
0
Then
p

n 2 n
|[DMu(x)|? = <Z|Dihu(x)|2 ) < ng (max|Dihu(x)|)p < ngzwihu(x)r)
L 1<isn -
i=1 =1
n

p 1 P
< niz (f |Du(x + the;)| dt) <
0

i=1

(by Holder)
pxo [l
< nfzf IDu(x + the)|P dt
i=1"0
Integration over I/:

n 1 no
fIDhu(x)lp dx < nP/ZZfdxf |Du(x + the;)|P dt = np/ZZf dtf |Du(x + the;)|Pdx
v ~ily Jo —ilo v

Thus

lehulp dx < np/zf |Du|? dx
v U

This estimate holds for smooth u, hence it is valid by approximation for arbitrary
u € H'?(U) and the lemma follows for C = n?/2.
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Lemma 2. Ifu € LP(U) for 1 < p < o and for some V cc U there exists a constant C such
that for all 0 < |h| < dist(V, dU) the inequality holds

ID™Mullpry < C

Then u € HY? (V) and

IDull ey < € = G (0, p, O).

Proof. Consider h; = %, where d = %dist(V, aUl).

||Dhju||Lp(V) <C =  foranyfixedi=1.2,..,n, the family {Dihju}j=1,2,...

is bounded in L? (V)-sense.

¢ In areflexive Banach space (thatis X** = X) any bounded set is weakly compact

e Sincep>1 = LP' =14 (% +$ = 1) = LP-space is a reflexive Banach space,

hence a bounded sequence in LP (V) is weakly compact

e Thus (for any index i < n) we can find a subsequence h; — 0 (h, = h;,) and a function
V; € LP (V)
such that

h, WweaklyinLP(V)
D: *u

U ——— ;.
e This, in its turn, means that for any g € L7(U) = LP(V)* we have
lim ng.h"udx =fgvidx.
k= Jy %
e Since C;°(V) € LA(U), forany ¢ € C;° (V)
lim (pDihkudx=f<pvl-dx
% v

k—o0

e Integration by parts (in the version for difference quotients) yields

f(le.h"udx =—qul._h"(pdx
U U

e Thus

j(pvi dx = lim | ¢ Dl.h"u dx =—1lim | u Di_h"go dx
v k—oo v k—oco U
e But Di_h"go 3 @y, (converges uniformly in U as k — o), hence

lim uDi_hkgo dx = fmpxi dx = fugoxi dx
U v

k—oo U



e [t follows that

prxi dx = —f(pvi dx
14 14

e This proves that v; is the weak derivative of u with respect to x; in V, in particular,
v; €LP (V)
e Thus the weak gradient Du € LP (V). Since u is itself in LP (V), we deduce therefore that

u € HYP (V).
14
e Finally, setting g = v/ € LY(V) in
k—oo0

lim gDih"udx =]gvi dx
v v

in (noti P (til) =
we obtain (notice that 1 + =P (p + q) p)
P 2

q : q nh
fv.‘lvidx Efvpdx = lim | v! D*udx <
l t k—oo l t
v v v

1 1
q P
< (f v?P dx) lim sup (f |Dih"u|pdx>
v k—oo v

1

q
SCl/p<fvfdx>
%

fvfdx <cC
v

Hence, dividing we obtain

which yields the required estimate of the weak gradient:
IDull p oy < C1(n,p)C

The lemma is proved completely. m
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Inner regularity for Lu = -3}, a;; Uypx; + Yicibju, teu=f
Structure conditions: a;;(x) = a;;(x) and

a;(x) € C*(U),  bi(x),c(x) eL*(U),  f € L*).

The uniform ellipticity: there is a constant &« > 0 such that forany { € R* and all x € U

S a6k 2 alil
ij=1

Main Theorem. Let u € H?(U) be a weak solution of Lu = f.

Thenu € leéi(U) and for any open subset V cc U the following estimate holds:

||u||H2,2(V) =< C(”f”LZ(U) + ”u”LZ(U))-

Here C = C(L,U,V).

Corollary. We have the classical identity
Lu=f a.e. inU
Indeed, for any function v € C,°(U) we have the weak identity

B(u,v) = (f,v).

2,2
loc

On the other hand, since u € H; . (U) we can integrate by parts the left hand side:
B(u,v) = (Lu,v).

Thus (Lu — f,v) = 0forall v € C;°(U),and so Lu = f a.e.in U.

Proof of the Main Theorem. We choose arbitrarily some open set W such that
VccWccU
and select some smooth function {(x) satisfying
0<¢<1 {=1onV and {=0onR"\W.
Such a function is called a cutoff function.
Since u is a weak solution we have B(u,v) = (f,v) forallv € Hé‘z (U), hence

n n
Z f aiju;iv,’cj dx = ffv dx, f= f—Zbiuxi —cu € L*(U)
U U -

ij=1

(*)



e Forany anindex k < n consider the test function

v = D" (¢?Dfw)

v E Hé’z (U) for small h
We have

n
A= Z f aiju;iv,’c.dxszvdx =:B
= v ! u

1) Estimate of A. Integration by parts and Leibniz rule (in the difference quotients versions)
yield:

n

A=— Z j a;jul, (D;h(CZDQu))’ dx =
U xj

ij=1 J

n
= > | o) @Dju), dx =
U

ij=1
n

= > | alph(u) (€0pu), dx + [ ue Dl(a))@Dpw),
ij=1

Here afi(x) = a;;(x + hey). Expanding the derivative (¢ ZD,?u);. we obtain
]

A:A1+A2

where

n
A=y | abeoi(u) Db, )dx
ij=1"Y
and
n
Ay = Z f (200, al D (uy,) D) + C2DJ (g, DP (uf,) + 200 1, D (i) DE ()]
ij=1"U

By uniform ellipticity,

A = afu {? i(D;ﬁ‘ (u;j)>2 dx = ajufz |IDE(Du)|?dx

Moreover, we have for some appropriate C = C(a;j, b;,c,{’) > 0 from boundedness of the
coefficients of L:

|4,] < Cf((|D,?Du| - |Dfu| + |DEDu| - |Dul + |D}u| - |Dul) dx
U
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Applying Cauchy’s inequalities

CZ
cs|pfDu| - |Dpul <5 ¢?|Dpul” +— [Dfu[’,

C2
C{|DDu| - |Du| < g ¢2|pppu|” + >z 1Dul?,

C C
Ce|Dfu| - |Du| < 7( D) +7€|Du|2
Notice that
if e < C then £<C—2.
2 2€

Thus, taking into account that { < 1 everywhere and { = 0in R" \ W we get
2|ph g, |2 c* e 2
14,] < e | ¢?|DrDu|” dx +— (|Dku| + |Du )dx
w € Jw

Now choose additionally € < % and apply the integral estimate for difference quotients

(Lemma 1 above)
ho |2 2 —
f |Dku| dx < le |Dul“dx , C, = C;(n,p).
w U

Thus we arrive at
2

& 21php.,|? 2 ¢
Azl < = | C|DEDu| dx + C, | IDul?dx,  C,=—(1+Cy).
2 )y U €
These two estimates for A imply together
o 2
A= —f C2|DRDu|” dx — sz |Du|?dx .
2 )y U
2) Estimate of B. Applying Lemma 1 to v we find
- 2 2
j v2dx = j vidx = |Dg"(2Dpw) [y, < G f ID(¢2D1) 2 dx
U w U
Here D, (¢?Dju) = 284y, Ditu + (Z(D,?u);k, hence for some C; = C5({)
D(¢?Dfw)|” < ¢ (|Dful” + ¢?|DfDul”)
and integration together with application of Lemma 1 to D]*u gives

fvzdx < C4f (|D,’}u|2 +(2|D;’}Du|2) dx < Csf (|Du|2 +{2|D,?Du|2) dx,
U w w
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Appling again the above trick with Cauchy’s inequality we find

IB] < cf(|f| T 1Dul + [uDlv] dx <
U
Ce
< Ef |v|?dx +—f (fI? + |Dul? + |u]?) <
U € Jy

2
< csef ¢2|DEDul’ + c7f (FI2 + 1Dl + [ul?)
w U

For € = — this finally yields
4Cg

a 2
B <5 [ ¢ Dkpul® + ¢, [ A1 + 1Dul? + )
U U

Recalling that A = B we obtain

E | 2 (phn? 2 2 2

7 | pEDul” < Co | (f1* + IDul® + [ul®)

4Jy U
The first integral may be estimated from below since { = 1 onV:

2
lel}chul = C9(||f”§2(u) + ||u||1%2(u) + ”Du”iZ(U)) = C9(”f”iz(y) + ||u||12{1,z(u))
14

This uniform bound for ||D,£‘Du|| by Lemma 2 implies regularity of Du:

L2(V)
DueHY2) =  Du€HU),

and therefore u € H>2(U) and

loc

”u”12.12.2(y) = ”u”f;(y) + ”DUHEZ(V) + ”Dzu”iZ(V) <C(,V,U)- (llflliZ(U) + ”u”12.11,2(U))

3) In order to achieve the required L?-norm of u in the latter estimate we notice that the
above argument also yields

Ilullyz-z(v) <GV, W)- (”f”LZ(W) + ”ullyl'z(w))
By choosing a new cutoff function
v = {%u, {(=1lonW

and applying formula (*) together the uniform ellipticity, one can prove that

.f{z |Dul?dx < C f(f2 + u?) dx (%)
U U
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Indeed,
n
> | @t dx = | Feud
7= v U

Here

> g @) = ) 20Gau, + Pagua, = adiDul’ + ) 208, anut,

i,jsn i,jsn i,jsn

This yields

a [ elourax < | Forudn— [ 3 28t au, dx
U U U

i,jsn

We have as above
n
fu= <f - Z bitty, — Cu) ¢?u < €0 |Dul? + Cyo(€)(f? + u?)
i

and

> 2 au, < egIDul + Gy (O

i,jsn
Combining these estimates we obtain the required inequality. It implies finally that
||u||H1:2(W) <C(L,V,W)- (llflle(U) + ”u”LZ(U))

The theorem is proved completely. m



