## Problems, PDE, 2008-09-25

To pass test you need to solve at least 5 problems from the following list.

1. Find a solution to the Cauchy problem

$$
(x+u+1) u_{x}^{\prime}+2 u_{y}^{\prime}=x+u-1, \quad u(x, 1)=0
$$

2. Prove that there is no real-valued solution of the equation $u_{x}^{\prime}=\left(u_{y}^{\prime}\right)^{2}$ in any open set which contains the straight line $y=0$ and which satisfies $u(x, 0)=x^{2}, x \in \mathbb{R}$. Prove that there is a solution defined in an open set containing the straight line $y=0$ and which satisfies $u(x, 0)=$ $e^{x}, x \in \mathbb{R}$.
3. Solve the initial problem: $x u_{x}^{\prime}+y u_{y}^{\prime}+u_{x}^{\prime} u_{y}^{\prime}=0, u(x, 0)=x^{2}$.
4. Let $u(x, t)$ be the weak solution to Burgers equation $u u_{x}^{\prime}+u_{t}^{\prime}=0$ with the initial data

$$
u(x, 0)=\left\{\begin{array}{cc}
0, & x \leq 0 \\
-x, & 0 \leq x \leq 4 \\
-4, & x \geq 4
\end{array}\right.
$$

a) By using the Rankine-Hugoniot condition find the equation of the shock line. b)Find an exact form of the weak solution.
5. By using Rankine-Hugoniot condition, find the weak solution to the Burger's equation

$$
u_{t}^{\prime}+u u_{x}^{\prime}=0
$$

with the initial data

$$
h(x)=\left\{\begin{array}{ccc}
-1 & \text { if } & x<0 \\
-1-x & \text { if } & 0 \leq x \leq 1 \\
-2 & \text { if } & x \geq 1
\end{array}\right.
$$

6. Find the Legendre transform of the following functions:
(a) $L(p)=\sum_{k, j=1}^{n} c_{k j} q_{k} q_{j}$, where matrix $\left(c_{k j}\right)$ is positively definite and symmetric;
(b) $L(p)=\max \left\{\left|q_{1}\right|^{2},\left|q_{2}\right|^{2}\right\}$
7. Obtain the solution to the following Cauchy problem

$$
u_{t}^{\prime}+\sum_{k=1}^{n}\left(u_{x_{k}}^{\prime}\right)^{2}=0, \quad u(x, 0)=a|x|
$$

by using the Hopf-Lax formula.
8*. (Evans, Problem 8, p.163) Let E be a closed subset of $\mathbb{R}^{n}$. Show that if the Hopf-Lax formula could be applied to the initial-value problem

$$
u_{t}^{\prime}+|D u|^{2}=0
$$

with the initial data $u(x, 0)=0$ when $x \in E$ and data $u(x, 0)=+\infty$ when $x \notin E$ then it would give the solution $u(x, t)=\frac{1}{4 t} \operatorname{dist}(x, E)^{2}$.

