Classification of the $1^{\text {st }}$ order PDE's

Standard notation:

For $u=u(x, y)$ one denotes the first derivatives by
$p=u_{x}^{\prime}$
$q=u_{y}^{\prime}$

- The most general $1^{\text {st }}$ order PDE

$$
F(x, y, u, p, q)=0
$$

- A linear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=c(x, y)
$$

- A homogeneous (linear) equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=0
$$

Generalizations of the linear case:

- A semilinear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=c(x, y, u)
$$

- A quasilinear equation

$$
a(x, y, u) u_{x}^{\prime}+b(x, y, u) u_{y}^{\prime}=c(x, y, u)
$$

Fully non-linear equation:

$$
F(x, y, u, p, q)=0
$$

with F chosen arbitrarily; then additionally required that

$$
{F_{p}^{\prime}}^{2}+{F_{q}^{\prime 2}}^{2} \neq 0
$$

1. Characteristics for a homogeneous linear equation

$$
a(x, y) u_{x}^{\prime}+b(x, y) u_{y}^{\prime}=0
$$

Characteristic equations:

$$
\frac{d x}{d t}=a(x, y), \quad \frac{d y}{d t}=b(x, y)
$$

this yields

$$
\frac{d u(x(t), y(t))}{d t}=0
$$

hence $u(x, y)=$ const along each characteristic curve. In particular $u(A)=u(B)$ on the picture above and one can determine solution (uniquely) if one knows the values of the solution at some points. For instance, if one knows the values along a curve γ which is transversal to characteristic curves:

2. The method of characteristics for general quasilinear equation

$$
a(x, y, u) u_{x}^{\prime}+b(x, y, u) u_{y}^{\prime}=c(x, y, u)
$$

If we introduce a vector field $V=\left(V_{1}, V_{2}, V_{3}\right)$ with coordinates

$$
V_{1}=a(x, y, u), \quad V_{2}=b(x, y, u), \quad V_{3}=c(x, y, u)
$$

then V is orthogonal to the normal vector

$$
N_{0}=\left(-u_{x}^{\prime}\left(x_{0} \cdot y_{0}\right),-u_{y}^{\prime}\left(x_{0} \cdot y_{0}\right), 1\right)
$$

at the point $\left(x_{0}, y_{0}, u\left(x_{0}, y_{0}\right)\right)$ on the graph of a solution $z=u(x, y)$:

- $\quad z=u(x, y)$ are integral surfaces of the vector field V
- a characteristic curve (in red)
- a Cauchy data Γ (in green): a curve in \mathbb{R}^{3} transversal to the vector field V Characteristic equations:

$$
\frac{d x}{d t}=a(x, y, u), \quad \frac{d y}{d t}=b(x, y, u), \quad \frac{d z}{d t}=c(x, y, u)
$$

The Cauchy problem: given a curve Γ in \mathbb{R}^{3}, find a solution u of the $1^{\text {st }}$ order equation whose graph contains Γ :

$$
\left.u\right|_{\gamma}=h(x, y)
$$

The inviscid Burgers' equation

$$
u u_{x}^{\prime}+u_{y}^{\prime}=0
$$

or equivalently

$$
\left(\frac{u^{2}}{2}\right)_{x}^{\prime}+u_{y}^{\prime}=0
$$

is an example of a conservation law in the general form

$$
(G(u))_{x}^{\prime}+u_{y}^{\prime}=0
$$

Mechanical interpretation: 1D stream of particles is in motion, each particle having constant velocity; a velocity field is given by $u(x, y)$, where y denotes time. If we follow an individual particle, we get a function $x=x(t)$ for which $u(x(t), t)$ remains constant:

$$
0=\frac{d}{d t}(u(x(t), t))=u_{x}^{\prime}(x(t), t) \cdot \frac{d x(t)}{d t}+u_{y}^{\prime}(x(t), t) \cdot \frac{d t}{d t}=u u_{x}^{\prime}+u_{y}^{\prime}
$$

An initial velocity (the Cauchy problem):

$$
u(x, 0)=h(x)
$$

- Characteristics lines are

$$
\begin{equation*}
x=h(s) t+s, \quad y=t, \quad z=h(s) \tag{**}
\end{equation*}
$$

- Then the general solution is $u=h(x-u y)$

One must distinguish two cases subject to the global behavior of the solution:

(I) $\quad h^{\prime}(s) \geq 0$ for all s

(II) $h^{\prime}\left(s_{0}\right)<0$ for some s_{0}

Indeed, a simple analysis of $\left({ }^{* *}\right)$ shows that two characteristics will intersect if and only if the system

$$
\begin{aligned}
& x=h\left(s_{1}\right) t+s_{1} \\
& x=h\left(s_{2}\right) t+s_{2}
\end{aligned}
$$

has a positive solution t (i.e. for positive time), which is equivalent to saying that

$$
t=\frac{s_{2}-s_{1}}{h\left(s_{1}\right)-h\left(s_{2}\right)}>0
$$

If this condition is satisfied for some values s_{1} and s_{2} then solution suffers a gradient catastrophe type of singularity. Otherwise the solution exists globally.

An example of the gradient catastrophe:

Weak solutions for quasilinear equations

Demonstration by an example of a conservation law in the form

$$
\begin{equation*}
(G(u))_{x}^{\prime}+u_{y}^{\prime}=0 \tag{*}
\end{equation*}
$$

where G is some smooth function of u.
The weak form of (*), also called a conservation law, is the following integrated identity (cf. the integral form of the heat equation given in lecture 1)

$$
G(u(b, y))-G(u(a, y))+\frac{d}{d y} \int_{a}^{b} u(x, y) d x=0
$$

Roughly speaking, a weak solution may contain discontinuities, may not be differentiable, and will require less smoothness to be considered a solution than a classical solution. Working with the weak solution of a PDE usually requires that the PDE be reformulated in an integral form. If a classical solution to the problem exists, it will also satisfy the definition of a weak solution.

We consider the simplest case when discontinuity of u, also called a shock front, is projected to a smooth curve front $x=\xi(y)$ in the $x y$-plane. In other words, for a fixed y function u has a jump discontinuity at $x=\xi(y)$:

Then we have the following necessary condition for the shock front $x=\xi(y)$:

Jump condition (or the Rankine-Hugoniot condition):

$$
\xi^{\prime}(y)=\frac{G\left(u_{r}\right)-G\left(u_{l}\right)}{u_{r}-u_{l}}
$$

Here u_{l} and u_{r} denote the limiting values of u from the left and right sides of the shock.

