Classification of the 1% order PDE’s
Standard notation:

For u = u(x, y) one denotes the first derivatives by

e The most general 1% order PDE
F(x,y,u,p,q) =0
e A linear equation
a(x, y)ux + b(x, y)uy = c(x,y)
e A homogeneous (linear) equation

a(x,y)uy + b(x,y)u;, =0

Generalizations of the linear case:

e A semilinear equation
a(x,y)uy + b(x,y)uy = c(x,y,u)
e A quasilinear equation

a(x,y,wuy + b(x,y, wuy, = c(x,y,u)

Fully non-linear equation:

F(x,y,u,p,q) =0

with F chosen arbitrarily; then additionally required that
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1. Characteristics for a homogeneous linear equation

a(x,y)uy +b(x,y)u, =0
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Characteristic equations:

dx

dy
E_a(x;y)i a_b(x;y)

this yields

du(x(t), y(©)) _

0
dt

hence u(x,y) = const along each characteristic curve. In particular u(4) = u(B)
on the picture above and one can determine solution (uniquely) if one knows the
values of the solution at some points. For instance, if one knows the values along a
curve y which is transversal to characteristic curves:
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2. The method of characteristics for general quasilinear equation
a(x,y, w)uy + b(x,y, wuy, = c(x,y,u)
If we introduce a vector field V = (V,, V,, V3) with coordinates
i =alx,y,w), Vy=blxyuw, Vz=clxyu
then V is orthogonal to the normal vector
Ny = (—ux(xo.¥0), —usz(xo-YO): 1)

at the point (x,, yo, u(x4,y0)) on the graph of a solution z = u(x, y):
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e z = u(x,y) are integral surfaces of the vector field V
e acharacteristic curve (in red)
e a Cauchy data I' (in green): a curve in R3 transversal to the vector field V

Characteristic equations:

dx dy

dz
E_a(x;y;u)J E_b(x'y;u); E—C(X,y,u)

The Cauchy problem: given a curve T in R3, find a solution u of the 1% order
equation whose graph contains I

uly, = h(x,y).



The inviscid Burgers’ equation

Uy +uy, =0
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is an example of a conservation law in the general form

or equivalently

(Gw)y tu, =0

Mechanical interpretation: 1D stream of particles is in motion, each particle
having constant velocity; a velocity field is given by u(x, y), where y denotes
time. If we follow an individual particle, we get a function x = x(t) for which
u(x(t), t) remains constant:

0= %(u(x(t), D) = u,(x(t),t) SiOp ), (x(t), t) -% =uu t+u,

dt
An initial velocity (the Cauchy problem):
u(x,0) = h(x).
e Characteristics lines are
x = h(s)t + s, y =t, z = h(s) (**)
e Then the general solution is u = h(x — uy)

One must distinguish two cases subject to the global behavior of the solution:
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() h'(s)=0 forall s (I) h'(sy) <0 for some s,



Indeed, a simple analysis of (**) shows that two characteristics will intersect if and
only if the system

x = h(s))t+s;
x = h(sy)t + s,

has a positive solution t (i.e. for positive time), which is equivalent to saying that
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If this condition is satisfied for some values s; and s,then solution suffers a
gradient catastrophe type of singularity. Otherwise the solution exists globally.

An example of the gradient catastrophe:




Weak solutions for quasilinear equations

Demonstration by an example of a conservation law in the form
(Gw)x +uy, =0 (*)

where G is some smooth function of u.

The weak form of (*), also called a conservation law, is the following integrated
identity (cf. the integral form of the heat equation given in lecture 1)

d b
G(u(b, y)) — G(u(a, y)) + EJ. u(x,y)dx = 0.

Roughly speaking, a weak solution may contain discontinuities, may not be differentiable, and will
require less smoothness to be considered a solution than a classical solution. Working with the weak
solution of a PDE usually requires that the PDE be reformulated in an integral form. If a classical

solution to the problem exists, it will also satisfy the definition of a weak solution.

We consider the simplest case when discontinuity of u, also called a shock front, is
projected to a smooth curve front x = &(y) in the xy-plane. In other words, for a
fixed y function u has a jump discontinuity at x = &(y):
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Then we have the following necessary condition for the shock front x = é(y):

Jump condition (or the Rankine-Hugoniot condition):

G(ur) - G(ul)
Uy — U

§'(y) =

Here u; and u,. denote the limiting values of u from the left and right sides of the
shock.



