
Fully non-linear equation: 

,

Where as usual , ,  , and 

, , , 0                                

 and  

0 

The latter implies that locally either  or  can be found as a function of the 
remaining variables. 

 

We have seen in the case  is linear with respect to ,  that the normal vector field 
to the graph ,  is orthogonal to the vector field , , 1 . In that 
case the Cauchy problem | ,  is well-posed if the curve γ is transversal 
to all characteristics it meets. 

 

In order to adjust the characteristics method one needs to “linearize” the initial 
non-linear equation. An idea is to show that the first derivatives  and 

 satisfy quasilinear equations.  

 

Namely, differentiat g , : in  w.r.t.  and  yields two quasilinear  equations for 

0                (1) 

and  

0                (2) 

Indeed, we have for the mixed partial derivatives: , hence eq. 
(1) and (2) take the quasilinear form 

 

 

  

 

 

 



Applying the characteristic equations s e ge to this sy tem w t 

,          ,          ,       . 

We need only one equation for . One can get by differentiating ,  w.r.t. 
 subject to the r sfirst p evious equation : 

, · ·  

Thus we have arrived at the following system 

, 

,       

   · ·

  

 

,   

 . 

This system determines a family of integral curves in  and it 
is called the characteristic equations for the non-linear equation 0.  

 

In general, in the -dimensional case one has a system of similar equations in 
. In fact, let we have a 1st o n e uation  rder no -lin ar eq

, , 0 

where , … ,  , 2,  and , … , , … ,  is 
the gradient of , … , . Then the modified system for characteristics is 

,  

  ,  

for 1, … , , and 

 · ∑  . 



 

Return to 2 . We must complete our Cauchy conditions because we have now 
5 ODE’s but only 3 initial Cau y it S ow we are in  ch  cond ions. ince n

 

it is clear that we need only the Cauchy data  and .  

• We recall that t y c n t n a parameterized curve: he Cauch  onditio  can be wri te  s a 

Γ:      ,    ,   

Substituting  o 0 yields  this int  , , , ,

, , , , 0                            (IC-1) 

 

• Another relation is found by differentiating the original initial condition (IC) 
with respect to the inner parameter : 

      , ,  · ,  ·  

This yie e o c dlds th  s -called strip on ition: 

      · ·               (IC-2) 

 

These equations (IC-1) - (IC-2) provide two additional initial data, for  and .  

In fact  and  need not to be uniquely defined and need not even exist. 
However, once  and n gral surface   do exist, one can determi e an inte

, ,   , ,   ,  

which gives a parametric form for the solution of the Cauchy problem for the non-
linear equation 0. 

 

Remark: Our notation  and  here correspond to  and  given in MacOwen, 
p. 34-35. 

 



Method of envelopes 

In general, for the 1st order non-linear equation 

, 0                                                  (*) ,

where , … ,    v n tation , 2, we set ector- o

 , , … ,

, ,  … ,

(We assume that  is smooth, at least of class  in some domain i ). n 

We are concerned with finding solutions  of (*) in some open set , subject 
to the Cauchy condition 

   

where Γ is a subset of the boundary . 

    on Γ, 

 

Suppose that we have found a parametric family of general solutions, say 
, . Then we write also 

( ,   

or the composed Jacobian of size 1 . f

 

Definition:  A function , … ,  of class  is called a complete integral 
in  provi d de

(i) ,  solves (*) for each  

and 

(ii) rank (  ,                , .   , (

In other words, ,  depends on all the  independent parameters , … , . 

 
 
 



Example 1. Clairaut’s equatio l . de Clairault, 1713-1765) n (in honor of A exis C

·   
 

For instance, if 2 one has 

,   

Then a complete integral is 

, ·  

 

 

Example 2. The eikona t ol equa ion fr m geometric optic is 

| |  … 1 

A complete integral is an affine function  

; , · , 

where | | 1,   .  

 

 

Example 3. The Hamilton-Jacobi equation from mechanics (William R. Hamilton, 
1805-1865 and Carl Jacobi, 1804-1851): 
 

Here ,

 0,                :    . 

, … , , ,  i.e.  .  Then  

, , , ; ·

is a complete integral for  and 0.  

 

  



Theorem 1. Let ;  be a complete integral for 0. Consider the vector 
equation 

                      ; 0                    )                   (**

Suppose we can solve it for  as a smooth function of : . Then the 
envelope function ;   solves also the original equation 0. 

Remark: The method also works if one replaces one parameter, say  by a 
function of the remaining parameters, and substitute it into  ; . This yields in 
general a wide choice of envelope solutions. 

Idea of the proof: We have  

;  ;   ;  ·   

where 0 for tion (**). Hence   by virtue of our assump

;  ,          1, … ,  

and it easily follows that the envelope function satisfies also , , 0.  

 

How it works? 

We return again to 2. Then a complete integral is denoted by , ; ,  and 
it depends on independent parameters  and . The above rank-condition is 
equivalent to saying that mapping 

, ,  ,

has rank 2 at each fixed  and , that is the matrix  

 

has maximal rank.  

In practice one usually uses a one parametric envelope solution which can be found 
by substituting some auxiliary function  or   in , ; , . 
We demonstrate this below. 

 



 

Example 5. Consider 

 

subject to initial condition 0, .  

Solution by the envelope method.  

(i) An idea is to find so ar forms of the kind:  lutions in the class of line

. 

The straightforward computation yields 0, , while  can be chosen 
arbitrarily. This gives after changing notation 

 

We see that the our Jac ia atr s): ob n m ix has rank 2 (the first two column

1 0 0
2 2 1  

Hence now we are in position of Theorem 1. 

(ii) Set , where the co n later. We have nstant  will be chose
 

and the envelope equation is 

0 2 2 , 

hence  

(iii) Substituting this into  we find 

, ; ,
4

 

(iv) Finally applying our Cauchy condition we find . Hence the 
desired solution is 

,
2 4

 

Question: Why ? Check that the above argument breaks down  for 
 

  



 

 

Example 5. Consider 

 

Analys: 

• is a complete in tegral 
• , ,  he .  This is the 

function  in the Theorem. 
 nce we find  and 

• substituting  into  yields: 0 
which provides us another, trivial, solution. 

Another choice is . The  n we get  

 

and 0 2 , hence .  

Substituting this into  yields . 

 


