Fully non-linear equation:

$$
F(x, y, z, p, q)=0
$$

Where as usual $z=u(x, y), p=u_{x}^{\prime}$ and $q=u_{y}^{\prime}$, and

$$
F_{p}^{\prime 2}+F_{q}^{\prime 2} \neq 0
$$

The latter implies that locally either p or q can be found as a function of the remaining variables.

We have seen in the case F is linear with respect to p, q that the normal vector field to the graph $z=u(x, y)$ is orthogonal to the vector field $V=\left(-F_{p}^{\prime},-F_{q}^{\prime}, 1\right)$. In that case the Cauchy problem $\left.u\right|_{\gamma}=u_{0}(x, y)$ is well-posed if the curve γ is transversal to all characteristics it meets.

In order to adjust the characteristics method one needs to "linearize" the initial non-linear equation. An idea is to show that the first derivatives $p=u_{x}^{\prime}$ and $q=u_{y}^{\prime}$ satisfy quasilinear equations.

Namely, differentiating w.r.t. x and y yields two quasilinear equations for p, q :

$$
\begin{equation*}
F_{x}^{\prime}+F_{z}^{\prime} u_{x}^{\prime}+F_{p}^{\prime} p_{x}^{\prime}+F_{q}^{\prime} q_{x}^{\prime}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{y}^{\prime}+F_{z}^{\prime} u_{y}^{\prime}+F_{p}^{\prime} p_{y}^{\prime}+F_{q}^{\prime} q_{y}^{\prime}=0 \tag{2}
\end{equation*}
$$

Indeed, we have for the mixed partial derivatives: $p_{y}^{\prime}=u_{x y}^{\prime \prime}=u_{y x}^{\prime \prime}=q_{x}^{\prime}$, hence eq.
(1) and (2) take the quasilinear form

$$
\begin{aligned}
& F_{p}^{\prime} p_{x}^{\prime}+F_{q}^{\prime} p_{y}^{\prime}=-F_{x}^{\prime}-F_{z}^{\prime} p \\
& F_{p}^{\prime} q_{x}^{\prime}+F_{q}^{\prime} q_{y}^{\prime}=-F_{y}^{\prime}-F_{z}^{\prime} q
\end{aligned}
$$

Applying the characteristic equations to this system we get

$$
\frac{d x}{d t}=F_{p}^{\prime}, \quad \frac{d y}{d t}=F_{q}^{\prime}, \quad \frac{d p}{d t}=-F_{x}^{\prime}-F_{z}^{\prime} p, \quad \frac{d q}{d t}=-F_{y}^{\prime}-F_{z}^{\prime} q .
$$

We need only one equation for z. One can get by differentiating $z=u(x, y)$ w.r.t. t subject to the first previous equations:

$$
\frac{d z}{d t}=\frac{d}{d t} u(x, y)=u_{x}^{\prime} \frac{d x}{d t}+u_{y}^{\prime} \frac{d y}{d t}=p \cdot F_{p}^{\prime}+q \cdot F_{q}^{\prime}
$$

Thus we have arrived at the following system

$$
\begin{gathered}
\frac{d x}{d t}=F_{p}^{\prime} \\
\frac{d y}{d t}=F_{q}^{\prime} \\
\frac{d z}{d t}=p \cdot F_{p}^{\prime}+q \cdot F_{q}^{\prime} \\
\frac{d p}{d t}=-F_{x}^{\prime}-F_{z}^{\prime} p \\
\frac{d q}{d t}=-F_{y}^{\prime}-F_{z}^{\prime} q
\end{gathered}
$$

This system determines a family of integral curves in $\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}$ and it is called the characteristic equations for the non-linear equation $F=0$.

In general, in the n-dimensional case one has a system of similar equations in $\mathbb{R}^{2 n+1}$. In fact, let we have a $1^{\text {st }}$ order non-linear equation

$$
F(x, u, D u)=0
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, and $D u=\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)=\left(p_{1}, \ldots, p_{n}\right)$ is the gradient of $u=u\left(x_{1}, \ldots, x_{n}\right)$. Then the modified system for characteristics is

$$
\begin{gathered}
\frac{d x_{k}}{d t}=F_{p_{k}}^{\prime} \\
\frac{d p_{k}}{d t}=-F_{x_{k}}^{\prime}-F_{z}^{\prime} p_{k}
\end{gathered}
$$

for $k=1, \ldots, n$, and

$$
\frac{d z}{d t}=D F \cdot p=\sum_{k=1}^{n} F_{p_{k}}^{\prime} p_{k} .
$$

Return to $n=2$. We must complete our Cauchy conditions because we have now 5 ODE's but only 3 initial Cauchy conditions. Since now we are in

$$
\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}
$$

it is clear that we need only the Cauchy data p_{0} and q_{0}.

- We recall that the Cauchy condition can be written as a parameterized curve:

$$
\Gamma: \quad x=x_{0}(s), \quad y=y_{0}(s), z=z_{0}(s)
$$

Substituting this into $F(x, y, z, p, q)=0$ yields

$$
\begin{equation*}
F\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)=0 \tag{IC-1}
\end{equation*}
$$

- Another relation is found by differentiating the original initial condition (IC) with respect to the inner parameter s :

$$
\frac{d}{d s} z_{0}(s)=\frac{d}{d s} u\left(x_{0}(s), y_{0}(s)\right)=u_{x}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d x_{0}}{d s}+u_{y}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d y_{0}}{d s}
$$

This yields the so-called strip condition:

$$
\begin{equation*}
\frac{d}{d s} z_{0}(s)=p_{0}(s) \cdot \frac{d x_{0}}{d s}+q_{0}(s) \cdot \frac{d y_{0}}{d s} \tag{IC-2}
\end{equation*}
$$

These equations (IC-1) - (IC-2) provide two additional initial data, for p_{0} and q_{0}. In fact p_{0} and q_{0} need not to be uniquely defined and need not even exist. However, once p_{0} and q_{0} do exist, one can determine an integral surface

$$
x=x(s, t), \quad y=y(s, t), \quad z=z(s, t)
$$

which gives a parametric form for the solution of the Cauchy problem for the nonlinear equation $F=0$.

Remark: Our notation p_{0} and q_{0} here correspond to φ and ψ given in MacOwen, p. 34-35.

Method of envelopes

In general, for the $1^{\text {st }}$ order non-linear equation

$$
\begin{equation*}
F(x, u, D u)=0 \tag{}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, we set vector-notation

$$
\begin{aligned}
& D_{p} F=\left(F_{p_{1}}, F_{p_{2}}, \ldots, F_{p_{n}}\right) \\
& D_{x} F=\left(F_{x_{1}}, F_{x_{2}}, \ldots, F_{x_{n}}\right)
\end{aligned}
$$

(We assume that F is smooth, at least of class C^{2} in some domain in $\mathbb{R}^{2 n+1}$).
We are concerned with finding solutions u of $\left(^{*}\right)$ in some open set $U \subset \mathbb{R}^{n}$, subject to the Cauchy condition

$$
u=h \quad \text { on } \Gamma
$$

where Γ is a subset of the boundary ∂U.

Suppose that we have found a parametric family of general solutions, say $u=$ $u(x, a)$. Then we write also

$$
\left(D_{a} u, D_{x a}^{2}\right):=\left(\begin{array}{cccc}
u_{a_{1}} & u_{x_{1} a_{1}} & \cdots & u_{x_{n} a_{1}} \\
\vdots & \vdots & \ddots & \vdots \\
u_{a_{n}} & u_{x_{1} a_{n}} & \cdots & u_{x_{n} a_{n}}
\end{array}\right)
$$

for the composed Jacobian of size $n \times(n+1)$.

Definition: A function $u=u\left(x_{1}, \ldots, x_{n}\right)$ of class C^{2} is called a complete integral in $U \times A$ provided
(i) $\quad u(x, a)$ solves (*) for each $a \in A$
and
(ii) $\operatorname{rank}\left(D_{a} u, D_{x a}^{2}\right)=n$,

$$
(x, a) \in U \times A
$$

In other words, $u(x, a)$ depends on all the n independent parameters a_{1}, \ldots, a_{n}.

Example 1. Clairaut's equation (in honor of Alexis C. de Clairault, 1713-1765)

$$
x \cdot D u+f(D u)=u
$$

For instance, if $n=2$ one has

$$
x u_{x}^{\prime}+y u_{y}^{\prime}+f\left(u_{x}^{\prime}, u_{y}^{\prime}\right)=u
$$

Then a complete integral is

$$
u(x, a)=a \cdot x+f(a)
$$

Example 2. The eikonal equation from geometric optic is

$$
|D u|^{2}=u_{x_{1}}^{2}+u_{x_{2}}^{2}+\ldots+u_{x_{n}}^{2}=1
$$

A complete integral is an affine function

$$
u(x ; a, b)=a \cdot x+f(b)
$$

where $|a|=1, \quad b \in \mathbb{R}$.

Example 3. The Hamilton-Jacobi equation from mechanics (William R. Hamilton, 1805-1865 and Carl Jacobi, 1804-1851):

$$
u_{t}^{\prime}+H(D u)=0, \quad H: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

Here $u=u(x, t)=u\left(x_{1}, \ldots, x_{n}, t\right)$, i.e. $t=x_{n+1}$. Then

$$
u(x, t ; a, b)=a \cdot x-t H(a)+b
$$

is a complete integral for $x \in \mathbb{R}^{n}$ and $t>0$.

Theorem 1. Let $u(x ; a)$ be a complete integral for $F=0$. Consider the vector equation

$$
\begin{equation*}
D_{a} u(x ; a)=0 \tag{}
\end{equation*}
$$

Suppose we can solve it for a as a smooth function of $x: a=\varphi(x)$. Then the envelope function $v(x)=u(x ; \varphi(x))$ solves also the original equation $F=0$.

Remark: The method also works if one replaces one parameter, say a_{n} by a function of the remaining parameters, and substitute it into $u(x ; a)$. This yields in general a wide choice of envelope solutions.

Idea of the proof: We have

$$
v_{x_{k}}^{\prime}(x)=\frac{\partial}{\partial x_{k}} u(x ; \varphi(x))=u_{x_{k}}^{\prime}(x ; \varphi(x))+\sum_{i=1}^{n} u_{a_{i}}^{\prime}(x ; \varphi(x)) \cdot \frac{\partial \varphi_{i}}{\partial x_{k}}
$$

where $u_{a_{i}}^{\prime}=0$ for $a=\varphi(x)$ by virtue of our assumption (**). Hence

$$
v_{x_{k}}^{\prime}(x)=\frac{\partial}{\partial x_{k}} u(x ; \varphi(x)), \quad k=1, \ldots, n
$$

and it easily follows that the envelope function satisfies also $F(x, v, D v)=0$.

How it works?

We return again to $n=2$. Then a complete integral is denoted by $u(x, y ; a, b)$ and it depends on independent parameters a and b. The above rank-condition is equivalent to saying that mapping

$$
(a, b) \rightarrow\left(u, u_{x}^{\prime}, u_{y}^{\prime}\right)
$$

has rank 2 at each fixed x and y, that is the matrix

$$
\left(\begin{array}{ccc}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)
$$

has maximal rank.
In practice one usually uses a one parametric envelope solution which can be found by substituting some auxiliary function $b=B(a)$ or $a=A(b)$ in $u(x, y ; a, b)$. We demonstrate this below.

Example 5. Consider

$$
u_{x}^{\prime}=u_{y}^{\prime 2}
$$

subject to initial condition $u(0, y)=\frac{y^{2}}{2}$.
Solution by the envelope method.
(i) An idea is to find solutions in the class of linear forms of the kind:

$$
v=a+b x+c y+d x y
$$

The straightforward computation yields $d=0, b=c^{2}$, while a can be chosen arbitrarily. This gives after changing notation

$$
v=a+b^{2} x+b y
$$

We see that the our Jacobian matrix has rank 2 (the first two columns):

$$
\left(\begin{array}{ccc}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 b x+y & 2 b & 1
\end{array}\right)
$$

Hence now we are in position of Theorem 1.
(ii) Set $a=k b^{2}$, where the constant k will be chosen later. We have

$$
v=k b^{2}+b^{2} x+b y
$$

and the envelope equation is

$$
0=\frac{\partial}{\partial b} v=2 k b+2 b x+y
$$

hence $b=-\frac{y}{2 x+2 k}$
(iii) Substituting this into v we find

$$
v(x, y ; a, b)=-\frac{y^{2}}{4(x+k)}
$$

(iv) Finally applying our Cauchy condition we find $k=-\frac{1}{2}$. Hence the desired solution is

$$
u(x, y)=\frac{y^{2}}{2-4 x}
$$

Question: Why $a=k b^{2}$? Check that the above argument breaks down for $a=k b$

Example 5. Consider

$$
u_{x}^{\prime} u_{y}^{\prime}=u
$$

Analys:

- $u=x y+a x+b y+a b$ is a complete integral
- $u_{a}^{\prime}=x+b, u_{b}^{\prime}=y+a$, hence we find $a=-y$ and $b=-x$. This is the function φ in the Theorem.
- substituting φ into u yields: $u=x y+a x+b y+a b=0$ which provides us another, trivial, solution.

Another choice is $b=a$. Then we get

$$
u=x y+a x+a y+a^{2}
$$

and $0=u_{a}^{\prime}=x+y+2 a$, hence $a=-\frac{x+y}{2}$.
Substituting this into u yields $u=-\frac{(x-y)^{2}}{4}$.

