Fully non-linear equation:
F(x,y,z,p,q) =0
Where as usual z = u(x,y), p = uy and q = u,, , and
12 12
E“+F"+0

The latter implies that locally either p or g can be found as a function of the
remaining variables.

We have seen in the case F is linear with respect to p, g that the normal vector field
to the graph z = u(x, y) is orthogonal to the vector field V = (—F,;, —F;, 1). In that
case the Cauchy problem u|, = uy(x,y) is well-posed if the curve y is transversal
to all characteristics it meets.

In order to adjust the characteristics method one needs to “linearize” the initial
non-linear equation. An idea is to show that the first derivatives p = u; and
q = u,, satisfy quasilinear equations.

Namely, differentiating w.r.t. x and y yields two quasilinear equations for p, q:
Fi + Fuy + Bjpy + Fjq,, = 0 (1)

and
E, + Fuy, + F,py, + Fjq;, =0 (2)

Indeed, we have for the mixed partial derivatives: p;, = uy, = uy, = qy, hence eq.
(1) and (2) take the quasilinear form

Fpy + Fjpy = —F; — E/p

Fyqy + Fjqy, = — F, — F;q



Applying the characteristic equations to this system we get

ax _ ay _ dp _ dq

I r — _ ! _
= o 2= fa =~ E-Ep, —=-K-Fq.

We need only one equation for z. One can get by differentiating z = u(x, y) w.r.t.
t subject to the first previous equations:

dz d , dx , dy . ,
Ezau(x,y)=uxa+uyazp-Fp+q-Fq

Thus we have arrived at the following system

dx
ac P’
dy '
dt qQ

This system determines a family of integral curves in R®> = R%, X RZ, X Rz and it
is called the characteristic equations for the non-linear equation F = 0.

In general, in the n-dimensional case one has a system of similar equations in
R?™*1 |n fact, let we have a 1* order non-linear equation

F(x,u,Du) =0

where x = (x4, ...,x,) ER" ,n > 2, and Du = (uxl, ...,uxn) = (pq, -, Pp) IS
the gradient of u = u(x,, ..., x;,,). Then the modified system for characteristics is

dxk _ ]
dt 2%

dpr _ r ’
dt - = ka - Zpk’

fork=1,...,n,and

d /
—=DF -p=3}_, B pr.



Return to n = 2 . We must complete our Cauchy conditions because we have now
5 ODE’s but only 3 initial Cauchy conditions. Since now we are in

R® = R, x R2, X R}
it is clear that we need only the Cauchy data p, and q,.
e We recall that the Cauchy condition can be written as a parameterized curve:
I x=x0(5), ¥y =0(s), z=12y(s)
Substituting this into F(x,y, z,p,q) = 0 yields

F (%0, Y0, Z0,P0, G0) = 0 (IC-1)

e Another relation is found by differentiating the original initial condition (IC)
with respect to the inner parameter s:

d
gzo(s) —u(xo(s) 3’0(5)) = ux(xo(s) }’0(5)) + uy(xo(s) 3’0(5))

This yields the so-called strip condition:

= 20(5) = po(s) - T2+ qo(s) - 22 (IC-2)

These equations (IC-1) - (1C-2) provide two additional initial data, for p, and q,.

In fact p, and g, need not to be uniquely defined and need not even exist.
However, once p, and g, do exist, one can determine an integral surface

x=x(s,t), y=y(s,t), z=2z(s,t)

which gives a parametric form for the solution of the Cauchy problem for the non-
linear equation F = 0.

Remark: Our notation p, and q, here correspond to ¢ and i given in MacOwen,
p. 34-35.



Method of envelopes
In general, for the 1% order non-linear equation
F(x,u,Du) =0 (*)
where x = (xq, ..., x,) € R™", n > 2, we set vector-notation
DyF = (E,, Ey,, ) By )
DyF = (K, Fy, -, E,)
(We assume that F is smooth, at least of class C? in some domain in R?"**1),

We are concerned with finding solutions u of (*) in some open set U c R", subject
to the Cauchy condition

u=h onT,

where T is a subset of the boundary dU.

Suppose that we have found a parametric family of general solutions, say u =
u(x, a). Then we write also

ua1 ux1a1 o uxna1
2 — : : . :
(Dau» Dxa) T :

uan uxlan o uxnan

for the composed Jacobian of size n x (n + 1).

Definition: A function u = u(xy, ..., x,,) of class C? is called a complete integral
in U X A provided

(i)  u(x,a)solves (*) foreacha € A
and
(i) rank (Dyu, D3,) =n, (x,a) € U X A.

In other words, u(x, a) depends on all the n independent parameters a, ..., a,.



Example 1. Clairaut’s equation (in honor of Alexis C. de Clairault, 1713-1765)
x-Du+ f(Du) = u
For instance, if n = 2 one has
xuy + yuy + f(u;,ug,) =u
Then a complete integral is

u(x,a) =a-x+ f(a)

Example 2. The eikonal equation from geometric optic is
|Dul* =ug, +uf, + ..+ug =1
A complete integral is an affine function
u(x;a,b) =a-x+ f(b),

where [a] =1, b € R.

Example 3. The Hamilton-Jacobi equation from mechanics (William R. Hamilton,
1805-1865 and Carl Jacobi, 1804-1851):

u, + H(Dw) = 0, H: R* > R.
Here u = u(x,t) = u(xq, .., xp, t), i.e.t = x,4q1. Then
ulx,t;a,b) =a-x—tH(a) + b,

is a complete integral for x € R® and t > 0.



Theorem 1. Let u(x; a) be a complete integral for F = 0. Consider the vector
equation

Dyu(x;a) =0 (**)

Suppose we can solve it for a as a smooth function of x: a = ¢@(x). Then the
envelope function v(x) = u(x; ¢(x)) solves also the original equation F = 0.

Remark: The method also works if one replaces one parameter, say a,, by a
function of the remaining parameters, and substitute it into w(x; a). This yields in
general a wide choice of envelope solutions.

Idea of the proof: We have

n

() = - u( 0(0) =1, (6 000) + ) s, (6 0()-

=1

0.
axk

where ug, = 0 for a = ¢(x) by virtue of our assumption (**). Hence

0
v,’ck(x) = a—xku(x; <p(x)), k=1,..,n

and it easily follows that the envelope function satisfies also F(x,v,Dv) = 0. =

How it works?

We return again to n = 2. Then a complete integral is denoted by u(x, y; a, b) and
it depends on independent parameters a and b. The above rank-condition is
equivalent to saying that mapping

(a,b) — (u, uy, uy)
has rank 2 at each fixed x and y, that is the matrix
Ug Ugy Uya
(u;, ufy uy>
has maximal rank.

In practice one usually uses a one parametric envelope solution which can be found
by substituting some auxiliary function b = B(a) or a = A(b) inu(x,y;a,b).
We demonstrate this below.



Example 5. Consider
2
Uy = Uy

2
subject to initial condition u(0,y) = >-.

Solution by the envelope method.
(i)  Anidea isto find solutions in the class of linear forms of the kind:
v=a+bx +cy+dxy.

The straightforward computation yields d = 0, b = ¢?, while a can be chosen
arbitrarily. This gives after changing notation

v =a+ b*x + by

We see that the our Jacobian matrix has rank 2 (the first two columns):

Ug  Ugy uglla _( 1 0 0)
U, Uy, Uy) \2bx+y 2b 1

Hence now we are in position of Theorem 1.

(ii) Seta = kb?, where the constant k will be chosen later. We have
v = kb? + b%*x + by
and the envelope equation is

9]
O—%U—Zkb+2bx+y,

y
2x+2k

(iii)  Substituting this into v we find

hence b = —

2

_y
4(x + k)

(iv) Finally applying our Cauchy condition we find k = — % Hence the

v(x,y;a,b) = —

desired solution is
2

y
2—4x

u(x,y) =

Question: Why a = kb?? Check that the above argument breaks down for
a=kb



Example 5. Consider
UplUy = U
Analys:

e u=xy+ ax+ by + ab is a complete integral

e u,=x+b,u, =y+a, hencewe finda = —y and b = —x. This is the
function ¢ in the Theorem.

e substituting ¢ intou yields: u = xy +ax+ by +ab =0
which provides us another, trivial, solution.

Another choice is b = a. Then we get
u=xy+ax +ay+ a?

and0=u{1=x+y+2a,hencea=—x+7y.

—_aN2
Substituting this into  yields u = — &=



