Lecture 5: The wave equation, dim=1

The one-dimensional wave equation is a hyperbolic 2™ order PDE of the form
Uty — 2 Uy = 0

It describes the propagation of waves with a constant speed ¢ # 0, ¢ € R.

The characteristics for the wave equation are x + ct = const, and the change of
variables

A=x+ct, Ui=x—ct
transforms the initial equation to its canonical form
Uy, =0.
Then the general solution of the latter equation is
u(x,t) = F(x + ct) + G(x — ct). )

If we assume that F(s) and G (s) are of class C? in the interval (a,b) c R then
u(x, t) is of class C2 in a rectangle domain

a<x*tct<b,

(see the picture below) which is called rectangles of characteristics:
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The fact that u(x, t) is a sum of two functions in one variable usually is interpreted
as a superposition of two waves propagating with a constant shape in opposite
directions along the x-axis.



Example: In the pictures below you can see the superposition of waves with

4

fe) = cosh(x + 2)

coshx = 1)’ g(x) =

and the corresponding time evolution:




The initial value problem
Let us consider the following Cauchy problem for the above wave equation:
u(x,0) = g(x), ut(x, 0) = h(x),
where g and h are arbitrary functions. Using the representation (*), we get
u(x,0) = F(x) + G(x)
and
ui(x,0) = cF'(x) — cG'(x).

By integrating the later,

c[F(x) —G(x)] = jxh(s) ds+C
0

and combining this with the former equation we find from the obtained linear
system that

1 1 r*
F(x) =§g(x)+zf h(s) ds + C;
0
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for some new constant C;. Substituting the found relations yields the well-known

d’ Alembert’s formula:

x+ct

u(x,t) = %[g(x +ct) + glx —ct)] + Zf h(s) ds.

x—ct

In the other direction, a straightforward calculation shows that the above
representation gives a C2-solution to the above Cauchy problem provided that
g€ C?andh € CL.



Some conclusions from d’Alembert‘s formula

e The smoothness of u(x,t) is prescribed by that of its initial conditions, for
instance, if g € CP*1 and h € CP then u(x, t) is a CP*1-solution.

e The solution is unique and u(x,t) depends continuously on the data (obs.
that there are not derivatives in the R.H.S.!). Hence the Cauchy problem for
the wave equation is well posed.

e One can see from the d’Alembert formula (see also the picture above) that
the solution at some point (x,,t,), Where x, € R, t, = 0, is completely
determined by the initial data in the following interval (the domain of
dependence for (x,, ty)):

Xg — Ctyg < x < Xxo + Cty

Physically, this property is equivalent to the finite propagation speed of

signals:
t A
Range (cone) of influence
(%0, to) of x;
Xg —Ct Xo + ct X1 X

e The later property provides also the background of special relativity
(considered firstly by Hendrik Lorentz and Henri Poincaré, and later by
Albert Einstein). The cone above then is the so-called light cone in the
space-time.



Weak solutions
In view of the general solution given above,
u(x,t) =F(x+ct) + G(x — ct)

it is natural to expect that it defines a weak solution when the functions F and G are
no longer of class C2. There are several ways to define a weak solution to the wave
equation, we consider an algebraic approach which requires no extra analytic
considerations.

Recall our notation
A=x+ct, U =x — ct,

and consider some functions F(A) and G (1) and a rectangle ABCD in the Au-plane
as shown in the first picture below:
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Since F(A) is constant along vertical lines and G (u) is constant along horizontal
lines, we have

F(A) =F(D), F(B)=F(), GA)=GB), G(C)=GD).
Using our representation u(4, u) = F(A) + G(u) we find
u(4) +u(C) = u(B) +u(D) (**)

that is the sums of the values of u at opposite vertices are equal. Translated to the
xt-plane, we view the previous relation as a parallelogram rule for solutions (recall
that the sides of the latter parallelogram are segments of characteristics).

Definition: a weak solution of the wave equation is any function u(x, t) satisfying
(**) for every such parallelogram in its domain.



