Lecture 5: The wave equation, dim=1

The one-dimensional wave equation is a hyperbolic $2^{\text {nd }}$ order PDE of the form

$$
u_{t t}^{\prime \prime}-c^{2} u_{x x}^{\prime \prime}=0
$$

It describes the propagation of waves with a constant speed $c \neq 0, c \in \mathbb{R}$.
The characteristics for the wave equation are $x \pm c t=$ const, and the change of variables

$$
\lambda:=x+c t, \quad \mu:=x-c t
$$

transforms the initial equation to its canonical form

$$
u_{\lambda \mu}=0 .
$$

Then the general solution of the latter equation is

$$
\begin{equation*}
u(x, t)=F(x+c t)+G(x-c t) \tag{}
\end{equation*}
$$

If we assume that $F(s)$ and $G(s)$ are of class C^{2} in the interval $(a, b) \subset \mathbb{R}$ then $u(x, t)$ is of class C^{2} in a rectangle domain

$$
a<x \pm c t<b
$$

(see the picture below) which is called rectangles of characteristics:

The fact that $u(x, t)$ is a sum of two functions in one variable usually is interpreted as a superposition of two waves propagating with a constant shape in opposite directions along the x-axis.

Example: In the pictures below you can see the superposition of waves with

$$
f(x)=\frac{1}{\cosh (x-1)}, \quad g(x)=\frac{4}{\cosh (x+2)}
$$

and the corresponding time evolution:

The initial value problem

Let us consider the following Cauchy problem for the above wave equation:

$$
u(x, 0)=g(x), \quad u_{t}^{\prime}(x, 0)=h(x)
$$

where g and h are arbitrary functions. Using the representation (*), we get

$$
u(x, 0)=F(x)+G(x)
$$

and

$$
u_{t}^{\prime}(x, 0)=c F^{\prime}(x)-c G^{\prime}(x) .
$$

By integrating the later,

$$
c[F(x)-G(x)]=\int_{0}^{x} h(s) d s+C
$$

and combining this with the former equation we find from the obtained linear system that

$$
\begin{aligned}
& F(x)=\frac{1}{2} g(x)+\frac{1}{2 c} \int_{0}^{x} h(s) d s+C_{1} \\
& G(x)=\frac{1}{2} g(x)-\frac{1}{2 c} \int_{0}^{x} h(s) d s-C_{1}
\end{aligned}
$$

for some new constant C_{1}. Substituting the found relations yields the well-known

d' Alembert's formula:

$$
u(x, t)=\frac{1}{2}[g(x+c t)+g(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s .
$$

In the other direction, a straightforward calculation shows that the above representation gives a C^{2}-solution to the above Cauchy problem provided that $g \in C^{2}$ and $h \in C^{1}$.

Some conclusions from d'Alembert's formula

- The smoothness of $u(x, t)$ is prescribed by that of its initial conditions, for instance, if $g \in C^{p+1}$ and $h \in C^{p}$ then $u(x, t)$ is a C^{p+1}-solution.
- The solution is unique and $u(x, t)$ depends continuously on the data (obs. that there are not derivatives in the R.H.S.!). Hence the Cauchy problem for the wave equation is well posed.
- One can see from the d'Alembert formula (see also the picture above) that the solution at some point (x_{0}, t_{0}), where $x_{0} \in \mathbb{R}, t_{0} \geq 0$, is completely determined by the initial data in the following interval (the domain of dependence for $\left(x_{0}, t_{0}\right)$):

$$
x_{0}-c t_{0} \leq x \leq x_{0}+c t_{0}
$$

Physically, this property is equivalent to the finite propagation speed of signals:

- The later property provides also the background of special relativity (considered firstly by Hendrik Lorentz and Henri Poincaré, and later by Albert Einstein). The cone above then is the so-called light cone in the space-time.

Weak solutions

In view of the general solution given above,

$$
u(x, t)=F(x+c t)+G(x-c t)
$$

it is natural to expect that it defines a weak solution when the functions F and G are no longer of class C^{2}. There are several ways to define a weak solution to the wave equation, we consider an algebraic approach which requires no extra analytic considerations.

Recall our notation

$$
\lambda=x+c t, \quad \mu=x-c t,
$$

and consider some functions $F(\lambda)$ and $G(\mu)$ and a rectangle $A B C D$ in the $\lambda \mu$-plane as shown in the first picture below:

Since $F(\lambda)$ is constant along vertical lines and $G(\mu)$ is constant along horizontal lines, we have

$$
F(A)=F(D), \quad F(B)=F(C), \quad G(A)=G(B), \quad G(C)=G(D) .
$$

Using our representation $u(\lambda, \mu)=F(\lambda)+G(\mu)$ we find

$$
\begin{equation*}
u(A)+u(C)=u(B)+u(D) \tag{}
\end{equation*}
$$

that is the sums of the values of u at opposite vertices are equal. Translated to the $x t$-plane, we view the previous relation as a parallelogram rule for solutions (recall that the sides of the latter parallelogram are segments of characteristics).

Definition: a weak solution of the wave equation is any function $u(x, t)$ satisfying $(* *)$ for every such parallelogram in its domain.

