
Lecture 6: The wave equation (cont.) 

Finite string with fixed ends: initial/boundary value problems 

The simplest interpretation of the 1-dim wave equation is the string model of finite 
length (the so-called vibrating string). In this model, ,  measures the distance 
from the equilibrium of the mass situated at point  and at the time . After a 
suitable idealization, combination of Hooke’s and Newton’s laws readily yield the 
wave equation for , .  

In this model, it is natural then to consider a vibrating string on the -interval 
0, , with Cauchy data for  at 0 (the shape of a string and the initial velocity 

of the string), and some boundary conditions for  at the “strings ends” for 0 
and .  

For example, the string with “fixed ends”  is described by the following conditions: 

0 

, 0 ,        for  , , 0 ,          0

0, , 0,                             for  0. 

Fourier method 

One approach to solve the above problem is to expand ,  in Fourier series 
with coefficients depending on time :  
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(This is possible if  are “small enough”; for example, if the coefficients can 
be majorized by some rapidly decreasi u ber sequence). Then one finds that  ng n m
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The general solution of h q t t e latter e ua ion  is 
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so we can determine coefficients   and  by the initial conditions. Namely,  
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with  standard Fourier form , one finally finds th   ulas at

2
  sin

 
 ,                 

2
  sin

 
 .  

 

A reflection method  

Another approach is the so-called Reflection method (see McOwen, p. 78-79 ). We 
explain it for the case when the ini / da roblem for the wave equation tial boun ry p

0 

is give 0n in the wedge 0, : 

0 , ,     , 0 ,                      0, 0, 

  0, 0,                                                                0, 0 

and the p y dition holds:  com atibilit  con

 0 0 0. 

Solution:  

Method I. For any point ,  in the infinite triangle  0 (see the picture 
below) ,  can be found by the d’Alembert formula by using the initial 
problem on interval ,  (observe that the left end of the interval is 
positive by our choice of ,  ) 
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We have: 

For the further conv  e c  characteristic  we have enience w  noti e that along the 

 .           (**) ,

In the upper triangle, 0  we also consider an arbitrary point ,  and 
draw characteristics from this point, and reflect one characteristic which meets the  
-axis as shown in the picture: 
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Then by parallelogram rule we have 

 ,

Here 0, , , ,  , . 

Hence applying  

, 0, , ,      

An taking into account the boundary condition 0, 0 and (**),  we 
obtain 
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Method II. A key idea is to use the symmetry in the above conditions to extend all 
the fun n b ion: ctio s y odd reflect

,      for  , 0 0, 0 

, 0,  0 ,            for  0

and define  for 0 and  for 0. Similar we 
extend  to . It is then easy to see that these extensions are consistent with 
the given conditions. s  Cauchy problem In this new setting, we have the tandard

, 0 ,              , 0 , 

and d’Alembert formula implies 
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Returning to the old notation we obtain 
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The nonhomogeneous wave equation: the Duamel1 Principle  

Now consider the nonhomogen u  eeo s wave quation 

,  

First we suppose we want to solve this equation subject to the homogeneous initial 
conditions: 

, 0 , 0 0. 

Remark: It is easy to see that any solution to the nonhomogeneous equation can 
be found as a sum of a solution with homogeneous initial conditions above and a 
solution to homogeneous equation 

0 

with the given initial conditions.  

Consider the following auxiliary problem:  

, 

0 for    

0,  for       0  

, 0, ,    

, 0, , ,  for     

where 0.  

 

Duhamel’s Principle.  If  , ,  is a ,    0   and continuous in ,  
0, and it solves the above auxiliary problem, then 

, , ,  

solves the homogeneous initial problem for the nonhomogeneous wave equation.  

Corollary. If the R.H.S. of the nonhomogeneous wave equation ,  is  in  
and    then an explicit form of the solution is given by 
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1 Jean-Maria-Constant Duhamel (1797–1872), a French mathematician 

 



Higher dimensions: spherical means 

Let  be continuous on , 2. The its spherical mean or average on a 
sphere of radius  centered at  is  
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•  denotes  the area of the unit s e  ,  ph re in 

2 

Γ n
2

 

•  denotes the surface measure. 
• Since  is continuous in ,  

lim ,  

The main property of ,  is the following identity, called also the Darboux 
equation: 

1
 , ∆ ,  

 

The latter identity allows to reduce the Cauchy problem for the n-dim wave 
equation to a partial differential equation in two variables. 

 

For n=3 we ave he irchh ff fo ula   h  t  K o rm
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which solves  

∆ ,  for    , 0 

with initial conditions 

, 0 ,     , 0 ,     for    . 


