Lecture 6: The wave equation (cont.)
Finite string with fixed ends: initial/boundary value problems

The simplest interpretation of the 1-dim wave equation is the string model of finite
length (the so-called vibrating string). In this model, u(x, t) measures the distance
from the equilibrium of the mass situated at point x and at the time t. After a
suitable idealization, combination of Hooke’s and Newton’s laws readily yield the
wave equation for u(x, t).

In this model, it is natural then to consider a vibrating string on the x-interval

[0, L], with Cauchy data for u at t = 0 (the shape of a string and the initial velocity
of the string), and some boundary conditions for u at the “strings ends” for x = 0
and x = L.

For example, the string with “fixed ends” is described by the following conditions:

ujy — P, = 0

u(x,0) =gx), ui(x,0)=nh(x), for 0<x<IL,
u(0,t) =u(L,t) =0, for t > 0.
Fourier method

One approach to solve the above problem is to expand u(x, t) in Fourier series
with coefficients depending on time ¢:

(00

u(x, t) = Z a (t) sinkn—x

L
k=1

(This is possible if a; (t) are “small enough”; for example, if the coefficients can
be majorized by some rapidly decreasing number sequence). Then one finds that
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The general solution of the latter equation is
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so we can determine coefficients c, and d;, by the initial conditions. Namely,
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with standard Fourier formulas, one finally finds that
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A reflection method

Another approach is the so-called Reflection method (see McOwen, p. 78-79 ). We
explain it for the case when the initial/boundary problem for the wave equation

up — ufly = 0
Is given inthe wedge x > 0, t = 0:
u(x,0) =g), ui(x,0)=nh(x), x>0, t=0,
u(0,t) =0, x =0, t>0
and the compatibility condition holds:
g(0) = h(0) = 0.
Solution:

Method I. For any point (x,, t,) in the infinite triangle x > t > 0 (see the picture
below) u(x,, ty) can be found by the d’Alembert formula by using the initial
problem on interval (x, — t,, xo + t,) (Observe that the left end of the interval is
positive by our choice of (x, ty))
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We have:

x0+t0
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For the further convenience we notice that along the characteristic x = t we have

u(a,a) = 9<§“) +2J3 h(s) ds. (**%)

In the upper triangle, 0 < x < t we also consider an arbitrary point (x4, t;) and
draw characteristics from this point, and reflect one characteristic which meets the
t-axis as shown in the picture:

t (x1,t1)

Then by parallelogram rule we have
u(xy, t1) = u(4) + u(B) — u(C)

Here A = (O, t1 — x1)1 B = (9517'”1, X1;-t1), C= (H;JCl, t1;X1.).

Hence applying

u(xl’ tl) = u(o, tl —_— xl) + u (xl_-l-t:l x1+t1) _ u(tl—xl tl_xl)
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An taking into account the boundary condition u(0,t; — x;) = 0 and (**), we
obtain
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Method I1. A key idea is to use the symmetry in the above conditions to extend all
the functions by odd reflection:

i(x,0) = —u(—x,t) for x<0,t=>0
7i(x,0) = u(x,t) for x >0, t>0

and define g(x) = —g(—x) forx < 0 and g(x) = g(x) for x > 0. Similar we
extend h(s) to h(s). It is then easy to see that these extensions are consistent with
the given conditions. In this new setting, we have the standard Cauchy problem

ﬁ(x, O) = g(.X), ﬂ't(-x' 0) = h(X),

and d’Alembert formula implies

1 1 x+ct~
i(x,t) ==[gx+ct) + Glx —ct)] + Zf h(s) ds
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Returning to the old notation we obtain

(1 1 x+ct
—[g(x+ct)+g(x—ct)]+—f h(s) ds, if x>t=0
2 2¢ )o_et

u(x’ t) = 1 1 x+ct
—[g(x+ct)—g(x—ct)]+—f h(s)ds, if 0<x<t
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The nonhomogeneous wave equation: the Duamel® Principle
Now consider the nonhomogeneous wave equation
Uy — Uy, = f(x,t)

First we suppose we want to solve this equation subject to the homogeneous initial
conditions:

u(x,0) = u;(x,0) = 0.

Remark: It is easy to see that any solution to the nonhomogeneous equation can
be found as a sum of a solution with homogeneous initial conditions above and a
solution to homogeneous equation

Up — AUy = 0
with the given initial conditions.
Consider the following auxiliary problem:
Ui — c?U}, =0, for xeR, t>0
U(x,0,s) =0, for x €R
Ul(x,0,s) =f(x,s), for xeR

where s > 0.

Duhamel’s Principle. If U(x,t,s)isa C?(x € R, t > 0) and continuous in s,
s > 0, and it solves the above auxiliary problem, then
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u(x,t) = j U(x,t —s,s)ds

solves the homogeneous initial problem for the nonhomogeneous wave equation.

Corollary. If the R.H.S. of the nonhomogeneous wave equation f(x,t) is Ct in x
and C° in t then an explicit form of the solution is given by

1
u(x, t) = 2_cf
0

! Jean-Maria-Constant Duhamel (1797-1872), a French mathematician
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Higher dimensions: spherical means

Let h(x) be continuous on R™, n > 2. The its spherical mean or average on a
sphere of radius r centered at x is

M (x,r) = a)i j|-§| h(x +71&) dS¢
n Jig)=1

e w, denotes the area of the unit sphere in R",
n
_ 2m2
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e dS; denotes the surface measure.

e Since h iIs continuous in x,
lim My (x,r) = h(x)
r—0+

The main property of M, (x, r) is the following identity, called also the Darboux
equation:

(62 n—120

W-I_ " a) Mh(x,r) = AxMh(x:T)

The latter identity allows to reduce the Cauchy problem for the n-dim wave
equation to a partial differential equation in two variables.

For n=3 we have the Kirchhoff formula

1 0 t t (¢
u(x, t) = = a(t j|-§|=1g(x + ct f)dS;) + Ejl-ﬂ:lh(x + ct §)dS;

which solves
uyy = c?Au, for xeR™ t>0
with initial conditions

u(x,0) =g), wui(x,0)=h(x), for xeR"



