
Lecture 11: Functional spaces 

 

Let  be a vector space over some field  (  or ) on which is defined a norm 

·

·

| | ·  
0 0 

Any norm on  introduces the structure of metric space, actually, a normed vector space. 

which is positive for distinct points and satisfies the axiom  of metric spaces.  

bilinear functional 

(F is either the real numbers  or complex numbers ) such that  

s f 0.  

, . 

(Note: a given norm by no means is generated by some scalar product.) 

| , |    

 

complete, if any Cauchy sequence converges to a limit in the space. A 
alled a Banach space. 

lly one consider only Hilbert spaces which have 

 : . 

That is  is a non-negative functional on  satisfying 

•  
•  
•  if and only if 

Namely, the distance between two vectors  and  is defined as the number  

,  

s

Frequently one defines the norm by virtue of a scalar product. We recall that a 

·,·  :  

• ,  is real and non-negative, and it vanishe  if and only i

Then the induced norm is given by 

Cauchy-Schwarz inequality: 

Topological definitions: 

A metric space  is called 
complete vector space is c

A vector space  equipped with a scalar product ·,·  and complete as a metric space in the norm 
generated by ·,· , is called a Hilbert space. Usua
a countable basis. 

 

 



Basis and systems 

ecall that a (at most countable) collection of vectors  is called orthogonal if for any two 
: 

 

tem is called orthonormal if additionally all vectors have the unit norm: 1 for all 
. 

An orthonormal system  is called complete if for any : 

,   

(if  is infinite then the last series is convergent).  

A complete, orthonormal set   is called an orthonormal basis for , and the cardinality of 
 is called the dim nsion of . 

 with bounded -norm: 

R
indices ,  and 

, 0

This sys

e

Example 1. Trigonometric series on the unit circle

2 cos | |sin            ∞  

,

The scalar product is defined as follows 

∞. 

he unit circle /2  . Any such series generates a 
holomorphic function in the unit disk and the scalar product may be interpreted as usual integral 
of product of two functions. 

Example 2. The space  of all polynomials in , , … ,  with real coefficients is a vector 
mials of a fixed degree). This space 

xa

,
| |

 , 

| | | |  

Here   is a harmonic homogeneous polynomial of degree  and | |  is radially 
symmetric polynomial.  

This is the so-called Hardy space  on t

space with a natural stratification (homogeneous polyno
admits many scalar products, for e mple, the canonic scalar product is  

where the integral is taken over the unit sphere in . The following (finite) decomposition 
holds: for any polynomial   



Example 3.  Let  be a bounded closed (=compact) set in . Then , the vector space o
all continuous functions on

f 
 , is a Banach space with respect to the uniform norm 

max| |. 

ap

| |  

z
 such that  

, , . 

 

Idea of the proof: the kernel 0 is a closed Hilbert subspace of  of co-dimension one. Take 
e orthogonal (one-dimensional) space and a unit vector in it, say, . Then there is  will 

Lebesgue integral and measure in  

th/area/volume of subsets of Euclidean spaces 
ith natural additivity and translation invariance properties. This suggests a suitable class of 

ntial

• the measure of a null-set is equal to zero; 
• measurable sets form a -algebra; 

 no -negative (the infinity value is allowed); 
• a function   is called measurable if for any real  the set :  is a -measurable 

nctions. 

erations: 

NOTE: not induced by a scalar product. 

 

Let  be a Hilbert space. A bounded functional :  is a linear m  which satisfies the 
property: there is a constant  such that  

for any vector  in .  

 

Ries  representation theorem: Let  be a Hilbert space with a scalar product ·,· . Then for 
any bounded functional  there is a vector 

th
be the desired vector. 

  

Measure theory initially provides a notion of leng
w
measurable subsets is an esse  prerequisite. 

The Lebesgue measure  is constructed in accordance with the following principles: 

• the measure is -additive and n

set; 

Then the Lebesgue integral is defined first for simplest, the so-called (nonnegative) indicator 
functions, and then extends on general signed fu

The principle advantage with the Lebesgue integral is a wider class of “permitted” op
limits, sums etc.  

 



Example 4. For any open set  in  and any 1 we define the so-called - norm as 

| |   

lim . 

a

inf  :  : 0  

• For any open set  in  the space  is a Hilbert space. 

Minkowski inequality: if 1 then 
  

 

• For any open set  in  and any 1, the space  is a Banach space. 

 

 functions:  is called a Lipschitz function in a set  in  if there is a non-negative 

| | | | 

. 

Hölder functions:  there is 1 and a non-negative  such that  

| | | |  

ne can define the following semi-norm: 

| |

The latter integral should be understood as the Lebesgue integral.  

Note: the space of continuous functions with respect to this -norm will not be complete for any 
1. On the other hand, one can prove that for any continuous function in  there holds 

In general, we have the essenti l supremum which is defined as 

 

Hölder inequality: 

   

Lipschitz
 such that  

for any two vectors ,  in 

 

for any two vectors ,  in .  is called the Hölder exponent.  
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