## Lecture 11: Functional spaces

Let $X$ be a vector space over some field $F(\mathbb{R}$ or $\mathbb{C})$ on which is defined a norm

$$
\|\cdot\|: X \rightarrow \mathbb{R}^{\geq 0} .
$$

That is $\|\cdot\|$ is a non-negative functional on $X$ satisfying

- $\|a+b\| \leq\|a\|+\|b\|$
- $\|\lambda a\|=|\lambda| \cdot\|a\|$
- $\|a\|=0$ if and only if $a=0$

Any norm on $X$ introduces the structure of metric space, actually, a normed vector space. Namely, the distance between two vectors $a$ and $b$ is defined as the number

$$
d(a, b)=\|a-b\|
$$

which is positive for distinct points and satisfies the axioms of metric spaces.
Frequently one defines the norm by virtue of a scalar product. We recall that a bilinear functional

$$
\langle\cdot \cdot\rangle: X \times X \rightarrow F
$$

( $F$ is either the real numbers $\mathbb{R}$ or complex numbers $\mathbb{C}$ ) such that

- $\langle a, a\rangle$ is real and non-negative, and it vanishes if and only if $a=0$.

Then the induced norm is given by

$$
\|a\|^{2}=\langle a, a\rangle .
$$

(Note: a given norm by no means is generated by some scalar product.)

## Cauchy-Schwarz inequality:

$$
|\langle a, b\rangle| \leq\|a\|\|b\|
$$

## Topological definitions:

A metric space $X$ is called complete, if any Cauchy sequence converges to a limit in the space. A complete vector space is called a Banach space.

A vector space $X$ equipped with a scalar product $\langle\cdot, \cdot\rangle$ and complete as a metric space in the norm generated by $\langle\cdot \cdot \cdot\rangle$, is called a Hilbert space. Usually one consider only Hilbert spaces which have a countable basis.

## Basis and systems

Recall that a (at most countable) collection of vectors $\left\{x_{k}\right\}_{k \in A}$ is called orthogonal if for any two indices $k, j \in A$ and $k \neq j$ :

$$
\left\langle x_{k}, x_{j}\right\rangle=0
$$

This system is called orthonormal if additionally all vectors have the unit norm: $\left\|x_{k}\right\|=1$ for all $k \in A$.

An orthonormal system $\left\{x_{k}\right\}_{k \in A}$ is called complete if for any $x \in X$ :

$$
x=\sum_{k \in A}\left\langle x, x_{k}\right\rangle x_{k}
$$

(if $A$ is infinite then the last series is convergent).
A complete, orthonormal set $\left\{x_{k}\right\}_{k \in A}$ is called an orthonormal basis for $X$, and the cardinality of $A$ is called the dimension of $X$.

Example 1. Trigonometric series on the unit circle with bounded $l^{2}$-norm:

$$
f=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{k x}: \quad \sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}<\infty
$$

The scalar product is defined as follows

$$
\left\langle\sum_{k=-\infty}^{\infty} c_{k} e^{k x}, \sum_{k=-\infty}^{\infty} d_{k} e^{k x}\right\rangle=\sum_{k=-\infty}^{\infty} c_{k} \overline{d_{k}}<\infty .
$$

This is the so-called Hardy space $H^{2}$ on the unit circle $\mathbb{R} / 2 \pi$. Any such series generates a holomorphic function in the unit disk and the scalar product may be interpreted as usual integral of product of two functions.

Example 2. The space $P$ of all polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with real coefficients is a vector space with a natural stratification (homogeneous polynomials of a fixed degree). This space admits many scalar products, for example, the canonic scalar product is

$$
\langle f, g\rangle=\int_{|x|=1} f(x) g(x) d S_{x}
$$

where the integral is taken over the unit sphere in $\mathbb{R}^{n}$. The following (finite) decomposition holds: for any polynomial $f \in P$

$$
f=f_{N}+f_{N-2}|x|^{2}+f_{N-4}|x|^{4}+\cdots
$$

Here $f_{k}$ is a harmonic homogeneous polynomial of degree $k$ and $|x|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$ is radially symmetric polynomial.

Example 3. Let $K$ be a bounded closed (=compact) set in $\mathbb{R}^{n}$. Then $C(K)$, the vector space of all continuous functions on $K$, is a Banach space with respect to the uniform norm

$$
\|f\|_{C(K)}=\|f\|_{\infty}=\max _{x \in K}|f(x)| .
$$

NOTE: not induced by a scalar product.

Let $X$ be a Hilbert space. A bounded functional $f: X \rightarrow F$ is a linear map which satisfies the property: there is a constant $C$ such that

$$
|f(x)| \leq C\|x\|
$$

for any vector $x$ in $X$.

Riesz representation theorem: Let $X$ be a Hilbert space with a scalar product $\langle\cdot, \cdot\rangle$. Then for any bounded functional $f$ there is a vector $y_{f} \in X$ such that

$$
\left\langle y_{f}, x\right\rangle=f(x), \quad \forall x \in X
$$

Idea of the proof: the kernel $f=0$ is a closed Hilbert subspace of $X$ of co-dimension one. Take the orthogonal (one-dimensional) space and a unit vector in it, say, $y$. Then there is $f(y) y$ will be the desired vector.

## Lebesgue integral and measure in $\mathbb{R}^{n}$

Measure theory initially provides a notion of length/area/volume of subsets of Euclidean spaces with natural additivity and translation invariance properties. This suggests a suitable class of measurable subsets is an essential prerequisite.

The Lebesgue measure $\mu$ is constructed in accordance with the following principles:

- the measure of a null-set is equal to zero;
- measurable sets form a $\sigma$-algebra;
- the measure is $\sigma$-additive and non-negative (the infinity value is allowed);
- a function $f$ is called measurable if for any real $c$ the set $\{x: f(x)<c\}$ is a $\mu$-measurable set;

Then the Lebesgue integral is defined first for simplest, the so-called (nonnegative) indicator functions, and then extends on general signed functions.

The principle advantage with the Lebesgue integral is a wider class of "permitted" operations: limits, sums etc.

Example 4. For any open set $D$ in $\mathbb{R}^{n}$ and any $p>1$ we define the so-called $L^{p}$ - norm as

$$
\|f\|_{L^{p}(D)}=\|f\|_{p}=\int_{D}|f(x)|^{p} d x
$$

The latter integral should be understood as the Lebesgue integral.
Note: the space of continuous functions with respect to this $p$-norm will not be complete for any $p>1$. On the other hand, one can prove that for any continuous function in $\bar{D}$ there holds

$$
\|f\|_{\infty}=\lim _{p \rightarrow \infty}\|f\|_{p}
$$

In general, we have the essential supremum which is defined as

$$
\|f\|_{\infty}=\inf \{M: \mu\{x: u(x)>M\}=0\}
$$

- For any open set $D$ in $\mathbb{R}^{n}$ the space $L^{2}(D)$ is a Hilbert space.


## Hölder inequality:

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

Minkowski inequality: if $p>1$ then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

- For any open set $D$ in $\mathbb{R}^{n}$ and any $p>1$, the space $L^{p}(D)$ is a Banach space.

Lipschitz functions: $f$ is called a Lipschitz function in a set $D$ in $\mathbb{R}^{n}$ if there is a non-negative $M$ such that

$$
|f(x)-f(y)| \leq M|x-y|
$$

for any two vectors $x, y$ in $D$.
Hölder functions: there is $\alpha<1$ and a non-negative $M$ such that

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha}
$$

for any two vectors $x, y$ in $D . \alpha$ is called the Hölder exponent.
One can define the following semi-norm:

$$
\|f\|_{C^{0, \alpha}(D)}=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}
$$

