Lecture 11: Functional spaces

Let X be a vector space over some field F (R or C) on which is defined a norm
1l X — R=.
That is ||+|| is a non-negative functional on X satisfying

e lla+bll < llall + bl
o |Aall =|Al- llall
e Jlall=0ifandonlyifa =0

Any norm on X introduces the structure of metric space, actually, a normed vector space.
Namely, the distance between two vectors a and b is defined as the number

d(a,b) = lla—bl|
which is positive for distinct points and satisfies the axioms of metric spaces.
Frequently one defines the norm by virtue of a scalar product. We recall that a bilinear functional

()Y XXX->F
(F is either the real numbers R or complex numbers C) such that
e (a,a) is real and non-negative, and it vanishes if and only if a = 0.
Then the induced norm is given by
lall?> = (a, a).

(Note: a given norm by no means is generated by some scalar product.)
Cauchy-Schwarz inequality:

{a, b)| < llall l|b]]

Topological definitions:

A metric space X is called complete, if any Cauchy sequence converges to a limit in the space. A
complete vector space is called a Banach space.

A vector space X equipped with a scalar product (-,-) and complete as a metric space in the norm
generated by (-,-), is called a Hilbert space. Usually one consider only Hilbert spaces which have
a countable basis.



Basis and systems

Recall that a (at most countable) collection of vectors {x; },¢c4 is called orthogonal if for any two
indices k,j € Aand k # j:

<xkﬂxj> =0

This system is called orthonormal if additionally all vectors have the unit norm: ||x; || = 1 for all
k € A.

An orthonormal system {x; }xc4 is called complete if for any x € X:

X = Z(X'xk)xk

k€A

(if A is infinite then the last series is convergent).

A complete, orthonormal set {x; }e4 is called an orthonormal basis for X, and the cardinality of
A is called the dimension of X.

Example 1. Trigonometric series on the unit circle with bounded [?-norm:

[o e}

Qo : kx 2
f:7+2(akcoskx+bksmkx)= Z cpe Z |cpe|® < o0
k=1

k=—oc0 k=—oc0

The scalar product is defined as follows

oo}

(00} (00}
(Z cke'™, Z de**) = z Credy < .
K k=—co K

=—00 =—00

This is the so-called Hardy space H? on the unit circle R/2m . Any such series generates a
holomorphic function in the unit disk and the scalar product may be interpreted as usual integral
of product of two functions.

Example 2. The space P of all polynomials in x,, x,, ..., x,, with real coefficients is a vector
space with a natural stratification (homogeneous polynomials of a fixed degree). This space
admits many scalar products, for example, the canonic scalar product is

(f,9) = . f(x)g(x) dS,
x|=1

where the integral is taken over the unit sphere in R™. The following (finite) decomposition
holds: for any polynomial f € P

f=fyv+ fvzlxl®> + fy_alx]* + -

Here f is a harmonic homogeneous polynomial of degree k and |x|? = x2 + --- + x2 is radially
symmetric polynomial.



Example 3. Let K be a bounded closed (=compact) set in R™. Then C(K), the vector space of
all continuous functions on K, is a Banach space with respect to the uniform norm

Iflleqo = 1f lloo = maxif GOl

NOTE: not induced by a scalar product.

Let X be a Hilbert space. A bounded functional f: X — F is a linear map which satisfies the
property: there is a constant C such that

If GOl < Clixl

for any vector x in X.

Riesz representation theorem: Let X be a Hilbert space with a scalar product (-,-). Then for
any bounded functional f there is a vector y, € X such that

(vpx)=f(x), VxE€X.

Idea of the proof: the kernel f = 0 is a closed Hilbert subspace of X of co-dimension one. Take
the orthogonal (one-dimensional) space and a unit vector in it, say, y. Then there is f(y)y will
be the desired vector.

Lebesgue integral and measure in R"

Measure theory initially provides a notion of length/area/volume of subsets of Euclidean spaces
with natural additivity and translation invariance properties. This suggests a suitable class of
measurable subsets is an essential prerequisite.

The Lebesgue measure u is constructed in accordance with the following principles:

e the measure of a null-set is equal to zero;

e measurable sets form a o-algebra;

e the measure is o-additive and non-negative (the infinity value is allowed);

e afunction f is called measurable if for any real ¢ the set {x: f(x) < c} is a u-measurable
set;

Then the Lebesgue integral is defined first for simplest, the so-called (nonnegative) indicator
functions, and then extends on general signed functions.

The principle advantage with the Lebesgue integral is a wider class of “permitted” operations:
limits, sums etc.



Example 4. For any open set D in R™ and any p > 1 we define the so-called L?- norm as

|VMmm=”ﬂp=L|ﬂﬂde

The latter integral should be understood as the Lebesgue integral.

Note: the space of continuous functions with respect to this p-norm will not be complete for any
p > 1. On the other hand, one can prove that for any continuous function in D there holds

nmw=ggwm.
In general, we have the essential supremum which is defined as
Iflleo = inf {M: p{x:u(x) > M} = 0}

e For any open set D in R™ the space L?(D) is a Hilbert space.

Holder inequality:
Ifglly < lIf1lp gl

Minkowski inequality: if p > 1 then
If+gll, < lifll, + lgll,

e Forany openset D in R™ and any p > 1, the space LP (D) is a Banach space.

Lipschitz functions: f is called a Lipschitz function in a set D in R™ if there is a non-negative
M such that

lfC) = fFO < M|x —y|
for any two vectors x,y in D.
Holder functions: there is @ < 1 and a non-negative M such that
If ) = fI < Mlx — y|*
for any two vectors x, y in D. « is called the Holder exponent.

One can define the following semi-norm:

If () — fO)

1 llcopy = su
lleoa) = SUp—p



