
Lecture 11: Functional spaces 

 

Let ܺ be a vector space over some field ܨ (Թ or ԧ) on which is defined a norm 

ԡ·ԡ Թஹ଴

·ԡ

ԡܽ ൅ ܾԡ ൑ ԡܽ ԡ
ԡܽߣԡ ൌ | | ·  ԡܽ
ԡܽԡ ൌ 0 ܽ ൌ 0 

Any norm on ܺ introduces the structure of metric space, actually, a normed vector space. 

ԡ

which is positive for distinct points and satisfies the axiom  of metric spaces.  

bilinear functional 

(F is either the real numbers Թ or complex numbers ԧ) such that  

s f ܽ ൌ 0.  

ԡܽԡଶ ൌ ,ܽۃ  .ۄܽ

(Note: a given norm by no means is generated by some scalar product.) 

,ܽۃ| |ۄܾ ൑  ԡܽԡ ԡܾԡ 

 

complete, if any Cauchy sequence converges to a limit in the space. A 
alled a Banach space. 

lly one consider only Hilbert spaces which have 

 : ܺ ՜ . 

That is ԡ  is a non-negative functional on ܺ satisfying 

• ԡ ൅ ԡܾ  
• ԡ ߣ  
•  if and only if 

Namely, the distance between two vectors ܽ and ܾ is defined as the number  

݀ሺܽ, ܾሻ ൌ ܽ െ ܾԡ 

s

Frequently one defines the norm by virtue of a scalar product. We recall that a 

ܺ : ۄ·,·ۃ ൈ ܺ ՜  ܨ

,ܽۃ • is real and non-negative, and it vanishe ۄܽ  if and only i

Then the induced norm is given by 

Cauchy-Schwarz inequality: 

Topological definitions: 

A metric space ܺ is called 
complete vector space is c

A vector space ܺ equipped with a scalar product ۄ·,·ۃ and complete as a metric space in the norm 
generated by ۄ·,·ۃ, is called a Hilbert space. Usua
a countable basis. 

 

 



Basis and systems 

ecall that a (at most countable) collection of vectors ሼݔ௞ሽ௞א஺ is called orthogonal if for any two 
݇ ് ݆: 

 

tem is called orthonormal if additionally all vectors have the unit norm: ԡݔ௞ԡ ൌ 1 for all 
݇ א  .ܣ

An orthonormal system ሼݔ௞ሽ௞א஺ is called complete if for any ݔ א ܺ: 

ݔ ൌ ෍ݔۃ,  ௞ݔ ۄ௞ݔ

(if ܣ is infinite then the last series is convergent).  

A complete, orthonormal set ሼݔ௞ሽ௞א஺  is called an orthonormal basis for ܺ, and the cardinality of 
is called the dim ܣ nsion of ܺ. 

 with bounded ݈ଶ-norm: 

R
indices ݇, ݆ א  and ܣ

,௞ݔۃ ۄ௝ݔ ൌ 0

This sys

௞א஺

e

Example 1. Trigonometric series on the unit circle

݂ ൌ
ܽ଴

2 ൅ ෍ሺܽ cos ሻ
ஶ

௞ୀଵ

௞௫
ஶ

| |ଶ
ஶ

௞ ݔ݇ ൅ ܾ௞ sin ݔ݇ ൌ  ෍ ܿ௞݁
௞ୀିஶ

׷           ෍ ܿ௞ ൏ ∞
௞ୀିஶ

  

ۃ ෍ ܿ௞݁௞௫
ஶ

௞ୀିஶ

, ෍ ݀௞݁௞௫
ஶ

௞ୀିஶ

ۄ ൌ ෍ ܿ௞݀௞ത

The scalar product is defined as follows 

തത ൏ ∞
ஶ

௞ୀିஶ

. 

he unit circle Թ/2ߨ . Any such series generates a 
holomorphic function in the unit disk and the scalar product may be interpreted as usual integral 
of product of two functions. 

Example 2. The space ܲ of all polynomials in ଵ, ,ଶݔ … ,  ௡ with real coefficients is a vectorݔ
mials of a fixed degree). This space 

xa

,݂ۃ ۄ݃ ൌ න ݂ሺݔሻ݃ሺݔሻ
|௫|ୀଵ

 ݀ܵ௫, 

݂ ൌ ே݂ ൅ ே݂ିଶ|ݔ|ଶ ൅ ே݂ିସ|ݔ|ସ ൅  ڮ

Here  ௞݂ is a harmonic homogeneous polynomial of degree ݇ and |ݔ|ଶ ൌ ଵݔ
ଶ ൅ ڮ ൅ ௡ݔ

ଶ is radially 
symmetric polynomial.  

This is the so-called Hardy space ܪଶ on t

ݔ
space with a natural stratification (homogeneous polyno
admits many scalar products, for e mple, the canonic scalar product is  

where the integral is taken over the unit sphere in Թ௡. The following (finite) decomposition 
holds: for any polynomial ݂ א ܲ  



Example 3.  Let ܭ be a bounded closed (=compact) set in Թ௡. Then ܥሺܭሻ, the vector space o
all continuous functions on

f 
 is a Banach space with respect to the uniform norm ,ܭ 

ԡ݂ԡ ሺ௄ሻ ൌ ԡ݂ԡஶ ൌ max
௫א௄

|݂ሺݔሻ|. 

ap
ܥ

|݂ሺݔሻ| ൑  ԡݔԡܥ

z
௙  such that  

,௙ݕۃ ۄݔ ൌ ݂ሺݔሻ, ݔ׊ א ܺ. 

 

Idea of the proof: the kernel ݂ ൌ 0 is a closed Hilbert subspace of ܺ of co-dimension one. Take 
e orthogonal (one-dimensional) space and a unit vector in it, say, ݕ. Then there is ݂ሺݕሻݕ will 

Lebesgue integral and measure in Թ௡ 

th/area/volume of subsets of Euclidean spaces 
ith natural additivity and translation invariance properties. This suggests a suitable class of 

ntial

• the measure of a null-set is equal to zero; 
• measurable sets form a ߪ-algebra; 

 no -negative (the infinity value is allowed); 
• a function ݂  is called measurable if for any real ܿ the set ሼݔ: ݂ሺݔሻ ൏ ܿሽ is a ߤ-measurable 

nctions. 

erations: 

஼

NOTE: not induced by a scalar product. 

 

Let ܺ be a Hilbert space. A bounded functional ݂: ܺ ՜ is a linear m ܨ  which satisfies the 
property: there is a constant  such that  

for any vector ݔ in ܺ.  

 

Ries  representation theorem: Let ܺ be a Hilbert space with a scalar product ۄ·,·ۃ. Then for 
any bounded functional ݂ there is a vector ݕ א ܺ

th
be the desired vector. 

  

Measure theory initially provides a notion of leng
w
measurable subsets is an esse  prerequisite. 

The Lebesgue measure ߤ is constructed in accordance with the following principles: 

• the measure is ߪ-additive and n

set; 

Then the Lebesgue integral is defined first for simplest, the so-called (nonnegative) indicator 
functions, and then extends on general signed fu

The principle advantage with the Lebesgue integral is a wider class of “permitted” op
limits, sums etc.  

 



Example 4. For any open set ܦ in Թ௡ and any ݌ ൐ 1 we define the so-called ܮ௣- norm as 

ԡ݂ԡ௅೛ሺ஽ሻ ൌ ԡ݂ԡ௣ ൌ න |݂ሺݔሻ|௣ ݀ݔ
஽

 

ԡ݂ԡஶ ൌ lim
௣՜ஶ

ԡ݂ԡ௣. 

a

ԡ݂ԡஶ ൌ inf  ሼߤ  :ܯሼݔ: ሻݔሺݑ ൐ ሽܯ ൌ 0ሽ 

• For any open set ܦ in Թ௡ the space ܮଶሺܦሻ is a Hilbert space. 

ଵ ௣ ௤

Minkowski inequality: if ݌ ൐ 1 then 
ԡ݂ ൅ ݃ԡ ൑  ԡ݂ԡ ൅ ԡ݃ԡ  

 

• For any open set ܦ in Թ௡ and any ݌ ൐ 1, the space ܮ௣ሺܦሻ is a Banach space. 

 

 functions: ݂ is called a Lipschitz function in a set ܦ in Թ௡ if there is a non-negative 

|݂ ሻ െ ݂ሺݕሻ| ൑ ݔ|ܯ െ | 

. 

Hölder functions:  there is 1 and a non-negative ܯ such that  

|݂ሺݔሻ െ ݂ሺݕሻ| ൑ ݔ|ܯ െ  ఈ|ݕ

ne can define the following semi-norm: 

஼ ሺ஽ሻ
௫ஷ௬

ݕ
ݔ| െ ఈ|ݕ

The latter integral should be understood as the Lebesgue integral.  

Note: the space of continuous functions with respect to this ݌-norm will not be complete for any 
݌ ൐ 1. On the other hand, one can prove that for any continuous function in ܦഥ there holds 

In general, we have the essenti l supremum which is defined as 

 

Hölder inequality: 

ԡ݂݃ԡ ൑  ԡ݂ԡ  ԡ݃ԡ  

௣ ௣ ௣

Lipschitz
  such that ܯ

ሺݔ

for any two vectors ݔ, ܦ in ݕ

ߙ  ൏

ݕ

for any two vectors ݔ,   .is called the Hölder exponent ߙ .ܦ in ݕ

O

ԡ݂ԡ బ,ഀ ൌ sup
|݂ሺݔሻ െ ݂ሺ ሻ|

 


