Serguei L'vovich Sobolev (06.10.1908 - 03.01.1989).

Generalized functions (later known as distributions), were
first introduced by Sobolev in 1935 for weak solutions, and
further developed by Laurent Schwartz.

1943-57 participated in the A-bomb project of the USSR. In
1956 Sobolev joined a number of prominent scientists in pro-
posing a large-scale scientific and educational initiative for
the Eastern parts of the Soviet Union, which resulted in the
creation of the Siberian Division of the Academy of Sciences.
He was the founder and first director of the Institute of Ma-
thematics at Akademgorodok near Novosibirsk, which was
later to bear his name.

Laurent Schwartz (05.03.1915 - 04.02.2002).

In November 1944 Schwartz discovered distributions: as con-
volution operators on the space of test functions, not quite
their final definition (that was to come to him in February
1945) as continuous linear functionals on space C;° (R™).

One of the “founders” of Bourbaki. In 1950 he was awarded
the Fields Medal for his distribution theory. Among other im-
portant contributions are homology and cohomology of
smooth manifolds and quantum field theory, noncommutative
harmonic analysis.

Paul Adrien Maurice Dirac, (08.08.1902 - 20.10.1984)

A British theoretical physicist, made fundamental contribu-
tions to the early development of both quantum mechanics
and quantum electrodynamics. Nobel Prize in physics for
1933. Among other discoveries, he formulated the Dirac equa-
tion, which describes the behavior of fermions and which led
to the prediction of the existence of antimatter.

In Principles of Quantum Mechanics, published in 1930, the del-
ta-function § is appeared for the first time.
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Test functions and distributions

The support of a function f defined in an open subset U of R" is the set

supp @ = {x € U: f(x) # 0}.

Def. Denote by D(U) = C;°(U) the class of all infinitely differentiable functions with com-
pact support in U: supp ¢ < U. The elements of D(U) are called also test functions. A se-
quence ¢, converges in D(U) to a test function ¢ € D(U) if there is a compact subset
K c U such that

supp ¢, € U, vn=123..

D(U)
and ||¢, — @|l¢my) — 0 in for any m = 0. We write also in this case ¢,, — ¢.

Def. A linear functional
F:DU)->R

is called a generalized function, or a distribution, if it is continuous in the sense that
DU
On (—2 ¢ implies F(¢,) = F(p). The (vector) space of all distribution is denoted by

D'(U). Similarly one defines distributions with values in C.

Example 1. Recall that L}, (U) denotes the class of locally integrable functions in U, that is
functions integrable on any compact subset of U. Then one easily can prove that any locally
integrable function f € L},.(U) induces a distribution

B = [ f@e@dr
U
In this case, f sometimes is called the symbol of F. Usually we identify the distribution F;
and its symbol f.
Any distribution which can be obtained as in Example 1 is called regular.

Remark 1. Notice that a regular distribution is uniquely determined by its symbol, that is if
Fr = F;then f = gae.inU.

Example 2. The delta-function of Dirac, §,(¢) = ¢(a) (a € U) is an example of non-regular
distribution.

m The fact that the delta-function is a distribution follows readily from the definition. We
show that it is non-regular. Let us argue by contradiction, say, there is a function
f € L1,.(R™) such that



56(9) = 9(0) = f Fe()dx
U

for any ¢ € D(U). Consider the function h(t) which is equal to 0 for t > 1, given by the
formula

o) = (1 TP <_ti2> ) $exp (1 a —1 t)2>'

fort € (0,1), and equal to 1 for t = 0. Then a radial symmetric function h(|x|) is an infinite-
ly differentiable in R™ and has the compact support

supp h(|x]) = By(1) = {x € R™: |x < 1]}.
Notice that for any € > 0 the dilated function h (ligl) is a test function:
p(x) =h (%) € D(R™).

Then we have by the definition &,(¢,) = ¢.(0) = 1 and |p.(x)| < 1. Hence,

1= f)pe(x)dx

Bo(e)

< fB rwia

because supp@, = B,(¢). The function f is integrable on B,(¢) and letting € - 0 we con-
clude that the latter integral converges to zero. The contradiction follows. m

Example 3. 1t can be shown (see lecture notes) that the functional
=& x +0oo x

G(@)zlim(f &dx+ &dx>
=0\ J_o X c X

is also a distribution.

Product of a distribution F € D'(U) and a smooth function h € C®(U) is a new distribution
defined by

(hF) (@) = F(ho).

Then for regular distributions we have hF, = Fy, (for h € C*(U), g € Lj,.(U)) which mo-
tivates the definition.



Derivative of a distribution

Let us consider a regular distribution Fy in U with a smooth symbol, say, f € C™(U), m = 1.
Then for any test function ¢ € D(U) we have (by integrating by parts)

F(D%p) = ]U f D% dx = (~1)\e! jU ¢ Dfdx = (—1)IIF e ()

Taking into account our identification between a symbol and the associate regular distribu-
tion, the following definition is a natural generalization of derivative.

Def. For any F € D'(U) we define the (weak) derivative D*F (a is some multi-index) by
the following rule:

(D*F)(p) = (=D F(D%p).
It easy to see that this new functional is actually a distribution: D*F € D'(U).

Hence any generalized function becomes infinitely differentiable in the above sense. In par-
ticular, regarding any function in L},.(U) as a symbol of the associate regular distribution,
we see that the weak derivative of such a function is defined at least on the level of distri-
bution. Sometimes the weak derivative is also a regular functional. This motivates the fol-
lowing definition.

Def. If both the distribution F € D'(U) and its derivative D*F are regular then one says on
the existence of the weak derivative (D) of the associate symbol. That is, if F = F; for

some g € L},,(U) and D®F = F,, for some h € L},,(U) then h is called the weak D“-
derivative of g. In other words, a function g € L},.(U) has a weak D*-derivative if there is
h € L},.(U) such that

f g D%pdx = (—1)'“'[ phdx, Yo € D(U).
u u

One denotes the weak derivative also by D*g. As a corollary of Remark 1, the weak deriva-
tive of a locally integrable function, if well-defined, is uniquely determined.

Fundamental solution

Now we can also define action of a linear partial differential operator (PDO) on distribu-
tions. Consider an operator of order m

Ly = z a, D%

|lalsm

with smooth coefficients a,. Then it is natural to define action of L on distributions by



LF = Z a,D°F, FeDU)
a

Hence, by the definition

ALFY(@) = ) @ DF () = ) DF (agp) = ) (=Dl F(D* (a00))

a a

=F( D (-DD(a, )
24
The operator

Vo= (~DD(a,0)

sometimes is called the adjoint operator to L. This, we obtain
LF =FL.

Definition. A distribution E = E(a) is called the fundamental solution of L if E is a solution
(in the distributional sense) of the inhomogeneous equation

LE = §&,.

Examples of weak derivatives
Example 4. The weak derivative of the delta-function in the one-dimensional case is

g =51 (0) =5, (22)=_ %
—=8a(0) = 8,(0) = —0a (32) = = ZL(O).

Example 5. Let h be the Heaviside function: h(x) = 1 for x = 0 and h(x) = 0 for negative
x < 0. Take ¢ € D(R) and find M > 0 such that supp ¢ € [-M, M]. Then

+ o0 M
W (@) = —f o'h dx = —f o' dx = p(0) = 6,(¢).
—o0 0

Hence, the weak derivative of the Heaviside function is the delta-function centered at zero.
Another interpretation of this property is that (due to definition above) the shifted Heavi-

. . , . . d
side function h(x — a) is the fundamental solution of the first order operatorL = =



Example 6 (Two-dimensional Heaviside function). Consider now the following step-
function

1 x4,x,>0
h , — 142
(1, %) {0 otherwise
2
LetD = aax F For any ¢ € D(R?) we find M > 0 such that supp ¢ c [-M,M] X [-M, M].
1 2
We have

M M g2 M
Dh (p) = h Dpdx = f dxlf — dx, = —f ®x,(x1,0)dx; = ¢(0,0).
R2 0 o 0x10x; 0

2

. . ]
Hence h is the fundamental solution of the operator L = 5% or
1 2

. Notice that the latter opera-
tor is the normal form of the wave operator. Hence, the fundamental solution of the wave
operator in two dimensions is a regular distribution (locally integrable function)

h(x; — ay,x, — a,). It turns out that it is not true for higher dimensions.

Example 4. The Laplace operator in R" is self-adjoint: A= A’. One can show (see lecture
notes) that the function

§1n|x| n=2
Y(x) = 1

— (n— 2)wy,|x|"2

is the fundamental solution of the n-dimensional Laplacian in the weak sense.

Remark 2. An important property of the above function W(x) is that it is actually is a local
integrable function in R™. It follows from a general fact that |x|? is locally integrable in R™
forp+n>0.



