
Weak solutions of the Poisson equation 

Now we are ready to demonstrate the usefulness of Sobolev spaces in the simplest situation, 
namely, we prove the existence of weak solutions of the Poisson equation.  

Let  is a bounded open subset of  and let us consider the Dirichlet problem for the Poisson 
equation: 
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The following remarks are appropriate to mention here: 
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that is  extends (by Hahn-Banach theorem) to a bounded functional in , . 
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, which implies, by the zero boundary condition, 0). Denote by | | ,

Since we are interested in the zero boundary condition, it is reasonable to consider  as the 
class of test functions. Let  be the classical solution of the above Dirichlet problem. Then 
multiplying the Poisson equation by an arbitrary test function  and integrating 
the obtained equality by parts yields 
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Hence we obtain a weak formulation of (1): given a function , any classical solution 
isson equation with zero boundary condition is a solution of the following problem  to the Po
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 be large enough such that the support of   is contained in the cube : | | . 
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Poincare’s inequality 

heorem  (Poincare’s inequality).  If    is a bounded open  subset of    then  there exists a 
onstant  0 such that  
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Applying Cauchy inequality    we obtain 
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picture shows the oscillating two‐dimensional membrane corresponding to the 7th tone 

sin 2 sin 4  in the rectangle 0,1 0,1 . 



          

 

Remark 2. The above Poincare inequality is a partial case of a more general relation the 
so‐called Poincare‐Friedrichs inequality inequality   
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Corollary 2 Existence and iqueness of the weak solution . For any   there is a 
,  which solves (3). 
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That is  is a weak solution to the Dirichlet problem formulated above.  

w be proved by the same method. 

Corollary 1. If    is a bounded open  subset of    then  there  exists a  constant 
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Existence of weak solutions for general elliptic equations 

The method described above can be applied also to the Dirichlet problem for more general 
elliptic equations. Conside ial operatorr a different  in divergence form 
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It is then convenient to restate the condition for a weak solution as follows: 
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where ·  s defined as before rmula (2) and the new bilinear form is given by 

,
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The existence of a weak solution will follow immediately if we show that ,  is a scala
roduct whose associated norm is equivalent to the standard norm in , . So we need to 

investigate under which conditions ,  meets these criteria. 

First we notice that ,  is symmetric by our assumption on the coefficients . Next, by 
using of the ellipticity condition we obtain the following lower estim
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where  is the constant in the Poincare inequality. If 0 then , , and if 
0 then  

, . 

, ,  

where  and  are some positive constants. The latter inequality is called coercive condition. 

re continuous in , hence they bounded 
there. Denoting by  the common upper bound we find 
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for all , and, consequently, for all .  

Summarizing, we conclude that ,  is a symmetric bilinear form satisfying the bilateral 
inequality  
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Applying then Corollary 1 we obtain  
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Riesz theorem to show that for any bounded linear functional  there is a function 
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Theorem. In the made assumptions, the we ution of  0 exists and is uniquely defi


