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Course’s contents:  

• First-order equations (the method of characteristics, Cauchy problem for quasi-linear 
and fully non-linear equations, weak solutions).  

• General techniques and principles for second-order equations  

• The wave equation (d'Alembert formula, weak solutions, reflections, Duhamel's 
principle, two-dimensional and three-dimensional wave equation, conservation of 
energy).  

• The Laplace equation (Mean Value Theorem and Maximum Principle, the fundamental 
solution, Green's function, Poisson kernel).  

• The heat equation (Weak maximum principle, properties of the heat kernel, properties 
of the solution to the pure initial value problem).  

 

Textbooks:  

• Robert C. McOwen, Partial Differential Equations, Methods and Applications, Prentice 
Hall/Pearson Education, Inc., 2003 (Second Edition)  

Optionally: 

• * Lawrence C. Evans. Partial Differential Equations, AMS, Providence, RI. Series: 
Graduate Studies in Mathematics, Vol. 19, 1998.  

 

Instruction: Lectures and problem solving sessions.  

 

Examination: Written examination at the end of the course. 
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Some important examples of general PDE 

Depending on the highest order of derivative involved, one speaks about PDE of first, second, 
third order etc. 

Equation Name Order Attributes 

 

 

 

the simplest conservation law 
(transport equation) 

 

1 

 

the best equation 

 Inviscid Burger’s equation 1 quasilinear 

 Scalar conservation law 1 quasilinear 

 Laplace Equation 2 linear homogeneous,  

elliptic 

 Poisson’s equation 2 linear nonhomogeneous,  

elliptic 

 Heat (or diffusion) equation 2 linear homogeneous,  

parabolic 

 The wave equation 

 

2 linear homogeneous 

hyperparabolic, 

 
Minimal surface equation 

 

2 quasilinear,  

elliptic 

 Korteweg–de Vries equation  

(KdV equation) 

3 non-linear,  

integrable (solvable) 

 

  



The 1st order PDE’s  in two variables: 

For  one usually denotes the first derivatives by 

,        

so that the most general 1st order PDE is written as 

 

A linear equation (linear with respect to unknown function ) 

 

Linear equations: 

A linear equation may be homogeneous ( ), e.g. 

 

or nonhomogeneous, e.g. 

 

 

Generalizations of the linear case: an equation is called quasilinear if it is linear in first-partial 
derivatives of the unknown function . 

Quasilinear equations: 

• a general quasilinear equation 

 

• a semilinear equation, if  and  independent of : 

 

 

Fully non-linear equations

with F chosen arbitrarily; then additionally required that 

: 

 

. 

Example:   (that is the gradient of the unknown function is a function of the 
‘height’). 

  



An example of construction of a 1st order PDE 

 

Wien's displacement law states that there is an inverse relationship between 
the wavelength  of the peak of the emission of a black body and its 
temperature : 

                                                                          (1) 

where  is Wien's displacement constant.  

 

This formulation is a typical example of a conservation law: 

• physically, a conservation law state that a certain physical property (energy, momentum 
etc) does not change in the course of time within an isolated physical system 
 

• mathematically, this means that parameters of some system located on some level-set of 
the conserved quantity (function) 
 

Most first-order partial differential equations are based on appropriate conservation laws and 
vice versa many 1st order PDE can be solved by determining the corresponding conservation law 
(called also the first integrals, or general solution). 

Let us denote the left hand side in (1) by . Then differentiating this by  and  
respectively, we find that 

 

that is  we can write the following relation on the first derivatives: 

                                                             (2) 

Notice that the last equation has many solutions of the form 

                                                   (3) 

How to find some specific ? 

• experimentally 
• substitute some known data, say  and , into the eq. (3) 
• to use an additional conservation law, say . 

 

Remark. For an arbitrary function , the function  is another solution to (2).   



Motivation of the method of characteristics (homogeneous linear equation) 

 

A key idea is to interpret the equation as a conservation law for  itself by introducing some 
additional variable (time). Write characteristic equations 

 

If  and  ‘good enough’ (say, continuously differentiable in  and ), we can solve the system 
for any given initial conditions. Let  and  be such a solution. Then  

 

Remark. If   is interpreted as a vector field in  then the above 
characteristic equations are integral curves for .  

In particular, any solution  is constant along an integral curve:  

 

                                                                              

 

                                               B                                (conservation property) 

                              A                       

         

                                                                       

                                                                                      

In particular  on the picture above and one can determine solution (uniquely) if one 
knows the values of the solution at some points. If one knows the values along a curve  which 
is transversal to characteristic curves then one can find the solution by sweeping out an integral 
surface: 

 

   

                                                                                     initial data  



The method of characteristics for general quasilinear equation 

 

The Cauchy problem: given a curve  in , find a solution  of the first order equation whose 
graph contains . 

Cauchy data are usually given as a system of parametric equations, say 

 

or explicitly, e.g., 

. 

The curve  is always assumed regular, that is 

 

The method of characteristics amounts to solving the characteristic equations 

 

Geometrically this is equivalent to finding integral surfaces. Consider a vector field  

 

If  is the graph of some solution in  then geometrically equality 

 

is equivalent to that  is orthogonal  at  to the normal vector  

 

                                                                       

                                                                        normal 

                                                                   

                                                                                             

                                        

                                                                                                     Characteristic curve 

                                                                                                                       

                                                                                                                                     

                                                                                            Basic characteristic curve                        



If the initial data  is nowhere tangent (= transversal) to the vector field such a (regular) 
curve  is called noncharacteristic.  

From linear algebra we find that  is noncharacteristic if and only if rank of the matrix 

 

where  and so on. 

 

Theorem. If  is noncharacteristic, then the vector field  admits a unique integral 
(parametric) surface containing . In particular, this yields the existence of a parametric 
solution for small values of parameter . 

If, additionally, the determinant  

 

there is an explicit solution  in a small neighborhood of the projection of  onto 
-plane. 

 

Sketch of the proof = Algorithm 1 (parametric method). 

• Solve the characteristic system (3) as a system of ODEs with Cauchy data 
 

where  is the parameter of parameterization of . 
• Thus we get a parametric parameterization of the solution for small enough :  

 
• By the inverse function theorem this parametric function can be reduced locally to an 

explicitly given function  if the Jacobian  

 

But for  the later determinant, by virtue of characteristic equations, coincides with  

 

which is non-zero. By continuity it is non-zero for small . 
• Elimination of  variables yields the required form . 

                                       ■ 

 

Remark. The mean and principal technical difficulty is to solve the characteristic system.  



Example 1. Solve by method of characteristics   which graph passes through the 

curve  with parameterization  

Solution. The characteristic equations are 

 

(the dot denotes the -derivative). Hence  we find 

 

We have  

,         

and  

. 

Thus we obtain the following parameterization of our solution: 

 

This gives the parametric representation.  

In order to find explicit formulas, we eliminate the  variables as follows: 

 

and  

 

This finally yields 

 


