
1. 

The fact that families of curves and surfaces can be defined by a differential equation 
means that the equation can be studied geometrically in terms of these curves and surfaces. 
The curves involved, known as characteristic curves, are very useful in determining 
whether it is or is not possible to find a surface containing a given curve and satisfying a 
given differential equation.       

Lagrange method (non-parametric method of characteristics) 
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This geometric approach to differential equations was begun by Leonhard Euler (1707-
1783), Joseph-Louis Lagrange (1736–1813) and Gaspard Monge (1746–1818).  

Lagrange method is based on the so-called general solution of a quasilinear equation. 
Instead of parametric representation of a characteristic curve (the left figure), one can 
define it implicitly, i.e. as an intersection of two surfaces (the right figure). 

 

 

 

 

 

 

 

 

 

Parametric and implicit representation of a curve 

 

 



Example 1. We illustrate the Lagrange method by the following equation 

 

Solution by the parametric method. The characteristic curves of the equation satisfy the 
system  

 

which has the following solution: 

 

If one knows some initial data then the solution is obtained as usual by substituting these 
data into the found relations.  

Solution by the Lagrange method. If we are merely interested at the general solution, can 
eliminate -variable as follows 

 

These relations can also be obtaining without recourse to the parametric method. Indeed, 
notice that the system of the characteristic equations (1) admits an equivalent non-
parametric form (i.e. without the auxiliary variable ): 

 

which yields 

 

and, similar,  

 

Analytically, this means that characteristic curves of our equation are located in 
intersection of two integral surfaces: 

 

Indeed, for  functions  and  are functionally independent, that is their Jacobian has 
the maximal rank:  

 



(equivalently, the gradients of  and  are nowhere collinear). Thus, any solution 
 is defined implicitly as follows 

 

for some choice of the function .    ■ 

Definition. By the general solution of a first-order, quasilinear partial differential equation 

 

we mean any relation of the form 

 

where  is an arbitrary function, and  and  are (independent) solutions to the non-
parametric system 

 

 

When  the solution  is a function of . We illustrate this by the following example. 

Example 2. 

Solution. The characteristic equations are 

 

Find the general solution of the linear equation  

 

Zero in the denominator of the last fraction means that  is constant along characteristics.  

The remained part of the system is symmetric with respect to  and , so we can find the 
symmetric combinations like  etc. To this end we denote by  the common 
value of the above differentials so that  

 

 

 

Summing the equations yields  

 

Then multiplying the first equation by , the second by , the third by , and summing again 
we arrive at 



 

These relations give two integrals 

 

Intersection of these two surfaces determines a characteristic curve in . Since  must be 
constant along such a curve we get the general solution  

 

where  is an arbitrary function of three variables. 

  

2. 

Mechanical interpretation. 1D stream of particles is in motion, each particle having 
constant velocity; a velocity field is given by , where t denotes time.  

The inviscid Burgers’ equation  

                                                                                                                    

If we follow an individual particle, we get a function , , for which velocity 
 remains constant. This yields 

 

or  

 

Remark. The above equation has a specific form,  which is called a 

conservation law form. In general, any relation, like 

 

is a conservation law. For instance,  expresses the fact that  has a constant value, 
while the general relation  can be interpreted as a divergence free vector field 

. Recall that such a vector field can always be written (at least locally) as a gradient of 
some function, called potential function of the vector field. 

A complete form of the Burgers’ equation contains an extra term 
(viscosity) and written as 

 

It occurs in various areas of applied mathematics, such as 
modeling of gas dynamics and traffic flow. 

Johannes Martinus Burgers (1895-1981) 



Now we return to the inviscid case and consider the initial problem velocity is given (to 
pose the Cauchy problem):  

  =  the velocity at the point  and time  

• Characteristic system has the form  

 

• Characteristics lines are straight lines: 

,                                            (2) 

• In particular,  becomes constant along every characteristic 
• The general solution (by the Lagrange method) is  

 
• The characteristics can cross; moreover, if the initial condition is differentiable then 

the “breaking” time can be found explicitly: 

 

• If  (the left figure) the motion develops without collisions    
• If  at some point then the solution will break and a shock wave will form.  

                                                                                          

 

 

                                                                                                                              

                                                                                                                                                         

 
 

(I)      for all                           (II)       for  some  

 

Indeed, a simple analysis of (2) shows that two characteristics will intersect if and only if 
the system 

 

has a positive solution  (i.e. for positive time), which is equivalent to   

 

If this condition is satisfied for some values  and then solution suffers a gradient 
catastrophe type of singularity (otherwise solutions exist globally). An example of the 
gradient catastrophe: 



 

Example 3.

Notice that   as  and  as .  

  Consider an increasing initial data (regular traffic flow) 

 

The picture below shows how velocity behaves as a function of coordinate  at three 
different ‘times’:  (green line),  (red line) and  (blue line). One can easily see 
how the profile functions move to the right: 

 


