Method of characteristic strips

Now we consider the general non-linear equation

$$
F(x, y, u, p, q)=0
$$

where $u=u(x, y), p=u_{x}$ and $q=u_{y}$. We assume that F is regular in the sense that

$$
F_{p}^{2}+F_{q}^{2} \neq 0 .
$$

The latter implies that locally either p or q can be found as a function of the remaining variables. In order to adjust the characteristics method to non-linear case one needs to "linearize" the initial non-linear equation. A key idea is to show that the first derivatives p and q satisfy quasilinear equations. To this end we differentiate $F=0$ w.r.t. x and y (we replace $u_{x x}$ by p_{x}, etc):

$$
\begin{align*}
& F_{x}+F_{u} u_{x}+F_{p} p_{x}+F_{q} q_{x}=0 \tag{1}\\
& F_{y}+F_{u} u_{y}+F_{p} p_{y}+F_{q} q_{y}=0 \tag{2}
\end{align*}
$$

But we have for the mixed partial derivatives:

$$
p_{y}=u_{x y}=u_{y x}=q_{x},
$$

hence equations (1) and (2) take the quasilinear form

$$
\begin{aligned}
& F_{p} p_{x}+F_{q} p_{y}=-F_{x}-F_{u} p \\
& F_{p} q_{x}+F_{q} q_{y}=-F_{y}-F_{u} q
\end{aligned}
$$

Applying the characteristic equations to this system we get four equations

$$
\frac{d x}{d t}=F_{p}, \quad \frac{d y}{d t}=F_{q}, \quad \frac{d p}{d t}=-F_{x}-F_{u} p, \quad \frac{d q}{d t}=-F_{y}-F_{u} q
$$

We need only one equation for u. Differentiating $u(x, y)$ w.r.t. t and applying the previous relations we get

$$
\frac{d u}{d t}=\frac{d}{d t} u(x, y)=u_{x} \frac{d x}{d t}+u_{y} \frac{d y}{d t}=p \cdot F_{p}+q \cdot F_{q}
$$

Thus we have arrived at the following system

$$
\begin{array}{ll}
\frac{d x}{d t}=F_{p}, & \frac{d y}{d t}=F_{q} \\
\frac{d u}{d t}=p \cdot F_{p}+q \cdot F_{q} & \\
\frac{d p}{d t}=-F_{x}-F_{u} p, & \frac{d q}{d t}=-F_{y}-F_{u} q
\end{array}
$$

This system determines a family of integral curves in $\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}$ and it is called the (strips) characteristic equations for the non-linear equation $F=0$.

Remark. In general, in the n-dimensional, case one has a system of similar equations in $\mathbb{R}^{2 n+1}$. In fact, let we have a $1^{\text {st }}$ order non-linear equation

$$
F(x, u, D u)=0
$$

where $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, n \geq 2$, and $D u=\left(u_{x_{1}}, \ldots, u_{x_{n}}\right)=\left(p_{1}, \ldots, p_{n}\right)$ is the gradient of $u=u\left(x_{1}, \ldots, x_{n}\right)$. Then the modified system for characteristics is

$$
\begin{aligned}
& \frac{d x_{k}}{d t}=F_{p_{k}} \\
& \frac{d p_{k}}{d t}=-F_{x_{k}}-F_{u} p_{k}, \quad k=1, \ldots, n
\end{aligned}
$$

and

$$
\frac{d u}{d t}=\sum_{k=1}^{n} F_{p_{k}} p_{k}
$$

Return to $n=2$. We must complete our Cauchy conditions because we have now 5 ODE's but only 3 initial conditions. Since now we are in

$$
\mathbb{R}^{5}=\mathbb{R}_{x y}^{2} \times \mathbb{R}_{p q}^{2} \times \mathbb{R}_{z}^{1}
$$

we need only the Cauchy data p_{0} and q_{0}.

- We recall that the Cauchy condition can be written as a parameterized curve:

$$
\Gamma: \quad x=x_{0}(s), y=y_{0}(s), \quad z=z_{0}(s)
$$

Substituting this into $F(x, y, z, p, q)=0$ yields

$$
\begin{equation*}
F\left(x_{0}, y_{0}, z_{0}, p_{0}, q_{0}\right)=0 \tag{IC1}
\end{equation*}
$$

- Another relation is found by differentiating the original initial condition (IC) with respect to the inner parameter s :

$$
\frac{d}{d s} z_{0}(s)=\frac{d}{d s} u\left(x_{0}(s), y_{0}(s)\right)=u_{x}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d x_{0}}{d s}+u_{y}^{\prime}\left(x_{0}(s), y_{0}(s)\right) \cdot \frac{d y_{0}}{d s}
$$

This yields the so-called strip condition:

$$
\begin{equation*}
\frac{d}{d s} z_{0}(s)=p_{0}(s) \cdot \frac{d x_{0}}{d s}+q_{0}(s) \cdot \frac{d y_{0}}{d s} \tag{IC2}
\end{equation*}
$$

These equations (IC1) - (IC2) provide two additional initial data, for p_{0} and q_{0}.

Remark. In fact p_{0} and q_{0} need not to be uniquely defined and need not even exist. However, once p_{0} and q_{0} do exist, one can determine an integral surface

$$
x=x(s, t), \quad y=y(s, t), \quad z=z(s, t)
$$

which gives a parametric solution of the Cauchy problem for the non-linear equation $F=0$.

Method of envelopes. In general, for the $1^{\text {st }}$ order non-linear equation

$$
\begin{equation*}
F(x, y, u, p, q)=0 \tag{*}
\end{equation*}
$$

We are concerned with finding solutions u of $\left(^{*}\right)$ subject to the Cauchy condition

$$
u=h \quad \text { on } \Gamma .
$$

Suppose that we have found a parametric family of general solutions, say

$$
u=u(x, y ; a, b)
$$

Example 3. Consider equation $u_{x}=u_{y}^{2}$ with initial condition $u(0, y)=\frac{y^{2}}{2}$. Consider the function

$$
u=a+b x+c y+d x y
$$

Then for $d=0$ and $b=c^{2}$ this function solves our equation (the parameter a can be chosen arbitrarily). This yields a parametric family of solutions (after changing notation $b \leftrightarrow c$):

$$
u=a+b^{2} x+b y
$$

Let us introduce the matrix

$$
J(u):=\left(\begin{array}{lll}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)
$$

Definition: A function $u=u(x, y ; a, b)$ of class C^{2} is called a complete integral provided there are some open subsets U and V such that
(i) $\quad u(x, y ; a, b)$ is a solution of equation (*) for any $(x, y) \in U$ and $(a, b) \in V$ and
(ii) $\quad \operatorname{rank} J(u)=2$ for any $(x, y) \in U$ and $(a, b) \in V$.

Theorem. Let $u(x, y ; a, b)$ be a complete integral for $F=0$. Suppose that the system

$$
\begin{equation*}
\partial_{a} u=\partial_{b} u=0 \tag{}
\end{equation*}
$$

has a solution $a=\varphi(x, y), b=\psi(x, y)$. Then the envelope function $v(x)=u(x, y ; \varphi, \psi)$ solves also the original equation $F=0$.

Idea of the proof: We have

$$
\partial_{x} v(x, y)=u_{x}(x, y ; \phi, \psi)+u_{a}(x, y ; \phi, \psi) \cdot \phi_{x}+u_{b}(x, y ; \phi, \psi) \cdot \psi_{x}
$$

where $u_{a}=u_{b}=0$ for $a=\varphi(x, y)$ and $b=\psi(x, y)$ by our assumption (${ }^{* *}$).
Hence

$$
\partial_{x} v(x, y)=u_{x}(x, y ; \phi, \psi)
$$

and it easily follows that the envelope function satisfies also $F=0$.

How it works?

In practice one usually uses a one parametric envelope solution which can be found by substituting some auxiliary function $b=B(a)$ or $a=A(b)$ in $u(x, y ; a, b)$. We demonstrate this below.

Example 3 (cont). We see that the our Jacobian matrix has the maximal rank:

$$
\operatorname{rank}\left(\begin{array}{lll}
u_{a}^{\prime} & u_{a x}^{\prime \prime} & u_{y a}^{\prime \prime} \\
u_{b}^{\prime} & u_{b x}^{\prime \prime} & u_{y b}^{\prime \prime}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 b x+y & 2 b & 1
\end{array}\right)=2
$$

Hence we are in position of the Theorem.
(i) Set $a=k b^{2}$, where the constant k will be chosen later. We have

$$
v=k b^{2}+b^{2} x+b y
$$

and the envelope equation is

$$
0=\frac{\partial}{\partial b} v=2 k b+2 b x+y
$$

hence

$$
b=-\frac{y}{2 x+2 k}
$$

(ii) Substituting this into v we find

$$
v(x, y ; a, b)=-\frac{y^{2}}{4(x+k)}
$$

(iii) Finally applying our Cauchy condition we find $k=-\frac{1}{2}$. Hence the desired solution is

$$
u(x, y)=\frac{y^{2}}{2-4 x}
$$

Question: Why $a=k b^{2}$? Check that the above argument breaks down for $a=k b$

