Method of characteristic strips

Now we consider the general non-linear equation

$$F(x, y, u, p, q) = 0$$

where u = u(x, y), $p = u_x$ and $q = u_y$. We assume that *F* is regular in the sense that

$$F_p^2 + F_q^2 \neq 0.$$

The latter implies that locally either p or q can be found as a function of the remaining variables. In order to adjust the characteristics method to non-linear case one needs to "linearize" the initial non-linear equation. A key idea is to show that the first derivatives p and q satisfy *quasilinear* equations. To this end we differentiate F = 0 w.r.t. x and y (we replace u_{xx} by p_x , etc):

$$F_x + F_u u_x + F_p p_x + F_q q_x = 0$$
 (1)

$$F_{y} + F_{u}u_{y} + F_{p}p_{y} + F_{q}q_{y} = 0$$
 (2)

But we have for the mixed partial derivatives:

$$p_y = u_{xy} = u_{yx} = q_x$$
 ,

hence equations (1) and (2) take the quasilinear form

$$F_p p_x + F_q p_y = -F_x - F_u p$$
$$F_p q_x + F_q q_y = -F_y - F_u q$$

Applying the characteristic equations to this system we get **four** equations

$$\frac{dx}{dt} = F_p, \qquad \frac{dy}{dt} = F_q, \qquad \frac{dp}{dt} = -F_x - F_u p, \qquad \frac{dq}{dt} = -F_y - F_u q$$

We need only one equation for u. Differentiating u(x, y) w.r.t. t and applying the previous relations we get

$$\frac{du}{dt} = \frac{d}{dt}u(x, y) = u_x\frac{dx}{dt} + u_y\frac{dy}{dt} = p \cdot F_p + q \cdot F_q$$

Thus we have arrived at the following system

$$\frac{dx}{dt} = F_p, \qquad \qquad \frac{dy}{dt} = F_q$$

$$\frac{du}{dt} = p \cdot F_p + q \cdot F_q$$

$$\frac{dp}{dt} = -F_x - F_u p, \qquad \qquad \frac{dq}{dt} = -F_y - F_u q$$

This system determines a family of integral curves in $\mathbb{R}^5 = \mathbb{R}^2_{xy} \times \mathbb{R}^2_{pq} \times \mathbb{R}^1_z$ and it is called the (*strips*) characteristic equations for the non-linear equation F = 0.

Remark. In general, in the *n*-dimensional, case one has a system of similar equations in \mathbb{R}^{2n+1} . In fact, let we have a 1st order non-linear equation

F(x,u,Du)=0

where $x = (x_1, ..., x_n) \in \mathbb{R}^n$, $n \ge 2$, and $Du = (u_{x_1}, ..., u_{x_n}) = (p_1, ..., p_n)$ is the gradient of $u = u(x_1, ..., x_n)$. Then the modified system for characteristics is

$$\frac{dx_k}{dt} = F_{p_k}$$
$$\frac{dp_k}{dt} = -F_{x_k} - F_u p_k, \quad k = 1, \dots, n$$

and

$$\frac{du}{dt} = \sum_{k=1}^{n} F_{p_k} p_k$$

Return to n = 2. We must complete our Cauchy conditions because we have now 5 ODE's but only 3 initial conditions. Since now we are in

$$\mathbb{R}^5 = \mathbb{R}^2_{xy} \times \mathbb{R}^2_{pq} \times \mathbb{R}^1_z$$

we need only the Cauchy data p_0 and q_0 .

• We recall that the Cauchy condition can be written as a parameterized curve:

$$\Gamma$$
: $x = x_0(s), y = y_0(s), z = z_0(s)$

Substituting this into F(x, y, z, p, q) = 0 yields

$$F(x_0, y_0, z_0, p_0, q_0) = 0$$
 (IC1)

• Another relation is found by differentiating the original initial condition (IC) with respect to the inner parameter *s*:

$$\frac{d}{ds}z_0(s) = \frac{d}{ds}u(x_0(s), y_0(s)) = u'_x(x_0(s), y_0(s)) \cdot \frac{dx_0}{ds} + u'_y(x_0(s), y_0(s)) \cdot \frac{dy_0}{ds}$$

This yields the so-called *strip condition*:

$$\frac{d}{ds}z_0(s) = p_0(s) \cdot \frac{dx_0}{ds} + q_0(s) \cdot \frac{dy_0}{ds}$$
(IC2)

These equations (IC1) - (IC2) provide two additional initial data, for p_0 and q_0 .

Remark. In fact p_0 and q_0 need not to be uniquely defined and need not even exist. However, once p_0 and q_0 do exist, one can determine an integral surface

$$x = x(s,t), y = y(s,t), z = z(s,t)$$

which gives a parametric solution of the Cauchy problem for the non-linear equation F = 0.

Method of envelopes. In general, for the 1st order non-linear equation

$$F(x, y, u, p, q) = 0 \tag{*}$$

We are concerned with finding solutions u of (*) subject to the Cauchy condition

$$u = h$$
 on Γ .

Suppose that we have found a parametric family of general solutions, say

$$u = u(x, y; a, b)$$

Example 3. Consider equation $u_x = u_y^2$ with initial condition $u(0, y) = \frac{y^2}{2}$. Consider the function u = a + bx + cy + dxy. Then for d = 0 and $b = c^2$ this function solves our equation (the parameter *a* can be chosen arbitrarily). This yields a parametric family of solutions (after changing notation $b \leftrightarrow c$): $u = a + b^2x + by$.

Let us introduce the matrix

$$J(u) \coloneqq \begin{pmatrix} u'_a & u''_{ax} & u''_{ya} \\ u'_b & u''_{bx} & u''_{yb} \end{pmatrix}$$

Definition: A function u = u(x, y; a, b) of class C^2 is called a *complete integral* provided there are some open subsets U and V such that

(i) u(x, y; a, b) is a solution of equation (*) for any $(x, y) \in U$ and $(a, b) \in V$

and

(ii) rank
$$J(u) = 2$$
 for any $(x, y) \in U$ and $(a, b) \in V$.

Theorem. Let u(x, y; a, b) be a complete integral for F = 0. Suppose that the system

$$\partial_a u = \partial_b u = 0 \tag{(**)}$$

has a solution $a = \varphi(x, y), b = \psi(x, y)$. Then the **envelope function** $v(x) = u(x, y; \varphi, \psi)$ solves also the original equation F = 0.

$$\partial_x v(x,y) = u_x(x,y;\phi,\psi) + u_a(x,y;\phi,\psi) \cdot \phi_x + u_b(x,y;\phi,\psi) \cdot \psi_x$$

where $u_a = u_b = 0$ for $a = \varphi(x, y)$ and $b = \psi(x, y)$ by our assumption (**).

Hence

$$\partial_x v(x, y) = u_x(x, y; \phi, \psi)$$

and it easily follows that the envelope function satisfies also F = 0.

How it works?

In practice one usually uses a one parametric envelope solution which can be found by substituting some auxiliary function b = B(a) or a = A(b) in u(x, y; a, b). We demonstrate this below.

Example 3 (cont). We see that the our Jacobian matrix has the maximal rank: $\operatorname{rank} \begin{pmatrix} u'_a & u''_{ax} & u''_{ya} \\ u'_b & u''_{bx} & u''_{yb} \end{pmatrix} = \operatorname{rank} \begin{pmatrix} 1 & 0 & 0 \\ 2bx + y & 2b & 1 \end{pmatrix} = 2$ Hence we are in position of the Theorem. Set $a = kb^2$, where the constant k will be chosen later. We have (i) $v = kb^2 + b^2x + bv$ and the envelope equation is $0 = \frac{\partial}{\partial b}v = 2kb + 2bx + y,$ hence $b = -\frac{y}{2x + 2k}$ Substituting this into *v* we find (ii) $v(x, y; a, b) = -\frac{y^2}{4(x+k)}$ Finally applying our Cauchy condition we find $k = -\frac{1}{2}$. Hence the desired solution is (iii) $u(x,y)=\frac{y^2}{2-4x}.$

Question: Why $a = kb^2$? Check that the above argument breaks down for a = kb