
1 
 

Lecture 4: Introduction in higher order PDE 

                                                     

Mathematical models: derivation of the wave equation 

Let us consider a stretched string of a finite length and fixed at the end points. The problem is to 
determine the equation of motion which characterizes the position  of the string at time  
after an initial disturbance is given.  

                                                           

                                                         

                   

            

                                   

In order to obtain a simple equation, we make the following main assumptions: 

1. The string is flexible and elastic, the tension in the string is always in the direction of the 
tangent to the existing profile of the string and the tension is constant. 

2. The deflection is small compared with the length of the string and the slope of the 
displaced string at any point is small compared with the length of the string. 

Denote by  the tension at the end points as shown in the figure above. By Newton’s second law 
of motion, the forces acting on the element of the string in the vertical direction are equal to the 
element’s mass times the acceleration: 

 

(by our assumption ). On the other hand, since the angles  and  are 
small enough, we also have , thus 

 

But we know that  and , hence 

 

and finally we obtain the one-dimensional wave equation: 

 

The initial disturbance may be interpreted then as the initial conditions: 

 

where  and  describe the initial profile and the initial velocity of the string respectively. 
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We consider the flow of heat along a metal insolated rod                                             

t                             initial temperature distribution   

Conservation laws and derivation of the heat equation 

 

                                                                                                                    

 

                    

 

Let  be temperature at time t at a given point  and  be the cross sectional area 
of the rod. Then energy of an arbitrary piece of rod from  to  is 

 

                                                                                                         = mass  

Here  is the specific heat capacity of the rod.  

The wave heat flow: 

 

Conservation of energy (in terms of power = time-derivative of energy): 

 

implies the integral form of the heat equation: 

 

By virtue of arbitrariness of  and  we find 

 

Finally, by using the Fourier law  we arrive at (the differential form 
of) the heat equation: 

 

f(x) 
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•  ,    

Analytic theory: the normal form of a higher order PDE 

Multi-index notation 

• ,                 

Products and derivative: 

•  
•  ,    

•  

Commutative relations: 

 

Definition: A general -order PDE is an equation of the kind 

 ,                                                                (*) 

Cauchy problem:  

• For the 1st order PDE with 2 variables we consider Cauchy  data on a curve  in 
 or on a surface for 3 variables, etc. 

• It is natural to assume that Cauchy problem for (*) involves replacing the initial 
curve  in  by an initial -dimensional surface  in , but we still need to 
involve some additional data, say the normal derivatives of  along . 
    

                                                                                                      

                           

                                                                                                                                                           

                                                                                                    the outward normal  

• What does it mean that  is noncharacteristic in this new set-up? 

 

Definition: By the Cauchy data for the -th order PDE (*) we understand the set of values 

 

along a hypersurface , where  is the unit normal vector to  Moreover, the surface  is 
called noncharacteristic for (*) if the derivatives (**) on  determine all derivatives of the 
solution  on  
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Example 1.  Consider the Cauchy problem in the upper half-plane : 

 

Notice that the unit (outward) normal to the boundary of the half-plane is vector  
(  which corresponds to the derivative . Write our equation as follows 

 

Then we know already  and in order to find the second derivative  

 

we need . This derivative can be found by differentiating the initial condition 
 two times: 

 

Hence . We can also find the mixed dderivative 

 

Thus we already know all first and second derivatives. Similarly we find 

 

 

 

and the last third derivative is found by differentiating the origin equation: 

 

hence we have 

 

Thus we obtain all higher derivatives by the induction procedure. In our case we see 
moreover that all derivatives starting with order 3 are zero. In particular,  is a polynomial: 
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The above procedure can be generalized as follows. Namely, thus defined noncharacteristic 
property will be true, if for example, we can express the initial equation in the form 

 

where the R.H.S. does not contain .  

 

Definition. The above is called the normal form of (*) with respect to the hypersurface S. 

 

By local changing of the coordinates , one can assume that  is ‘straightened 
out’, i.e. it coincides with a hyperplane in new coordinates.  

 

Example 2. Consider a surface  given by . Then in the new coordinates  

,      ,        

the surface is given as . It is easy to show that the Jacobian . ■ 

 

Thus, without loss of generality we can assume that  is given by  in some 
coordinates  and therefore the normal derivatives coincide with the 
corresponding derivative w.r.t. the distinguished coordinate : 

 

Hence our Cauchy problem is rewritten in this “flat” case as follows: 

 

 

In general (as in Example 1), for en equation given in the normal form, the Cauchy data 
determines all derivatives of the solution  on  Indeed, the derivatives can be  found step 
by step, by differentiating the initial conditions and the normal equation.  
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Augustin Louis Cauchy (1789-1857)                Sofia Vasilyevna Kovalevskaya (1850-1891) 

 

A deeper result is the celebrated 

Cauchy-Kovalevski Theorem: If all  are real analytic in a 
neighborhood of   , and if G is real analytic in a neighborhood of , then 
there exists a unique real analytic solution  of the above Cauchy problem in some 
neighborhood of . 

 

Shortcomings of Cauchy-Kovalevski Theorem: 

• The theorem is non-effective in practical questions 
• It fails to recognize well posed non-analytic Cauchy problems 

What is a well posed problem? 

In physics, one expects a stability of solutions with respect to their initial conditions, 
because a small change of data should induce only a small change in the solution. 
Otherwise, the solution becomes meaningless.  

Definition: A problem is well posed (in the sense of Hadamard) if a solution exists, is 
unique, and depends continuously on its data. 

Lewy example: there exists a complex-valued function  such that the 
differential equation 

 

has no solutions at all. Hence, the analog of the Cauchy-Kovalevskaya theorem fails for 
equations with the smooth (infinitely many times differentiable) coefficients. 
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Example 3 (McOwen, p.48). Find solution of the Cauchy problem  

 

in the form of power series expansion   

Solution. In assumption that our solution is an analytic function we have 

 

We have easily  and . Next,  

 

And by induction we find that , that is  

 

For  we have:  By induction one can prove 
that  for all . Thus we have 

 


