Lecture 5. Classification of the second-order equations in two variables

Characteristics for second-order equations

The general linear second-order partial differential equation in two variables is

$$
\begin{equation*}
a u_{x x}+b u_{x y}+c u_{y y}+d_{1} u_{x}+d_{2} u_{y}+e u+f=0 \tag{1}
\end{equation*}
$$

where a, b, c, \ldots are some twice continuously differentiable functions of x, y. Then

$$
a u_{x x}+b u_{x y}+c u_{y y}
$$

is called sometimes the principal part of (1). The classification of partial differential equations is suggested by the classification of the quadratic equation of conic sections in analytic geometry. Recall that the equation

$$
A \xi^{2}+B \xi \eta+C \eta^{2}+D_{1} \xi+D_{2} \eta+E=0
$$

represents hyperbola, parabola, or ellipse accordingly as $B^{2}-4 A C$ is positive, zero, or negative. The classification of second-order equations is based upon the possibility of reducing equation (1) by coordinate transformation to canonical or standard form at a point.

We start with the following problem: given curve $\gamma \subset \mathbb{R}^{2}(x, y)$, determine when γ is a characteristic curve, i.e. when does the Cauchy data along γ not determine all derivatives of the solution along γ.

Consider the equation (1) above with the Cauchy data along γ :

As usual, v is the unit normal vector to γ. Writing $v=\left(v_{1}, v_{2}\right)$ we obtain

$$
\frac{\partial u}{\partial v}=v_{1} u_{x}+v_{2} u_{y}
$$

hence our Cauchy problem is equivalent to the following

$$
\left.u\right|_{\gamma}=h,\left.\quad \frac{\partial u}{\partial x}\right|_{\gamma}=\varphi,\left.\quad \frac{\partial u}{\partial y}\right|_{\gamma}=\psi
$$

Notice that thus transformed Cauchy data contains already three equations, that is, these equations are dependent. An additional condition is the so-called compatibility equation

$$
h^{\prime}(s)=\varphi(s) \gamma_{1}^{\prime}(s)+\psi(s) \gamma_{2}^{\prime}(s)
$$

Here $\left(\gamma_{2}(s), \gamma_{1}(s)\right)$ is a parameterization of γ. Indeed, the compatibility equation follows from the equality $u\left(\gamma_{1}(s), \gamma_{2}(s)\right)=h(s)$ by taking derivative with respect to s :

$$
h^{\prime}(s)=\frac{d}{d x} u\left(\gamma_{1}(s), \gamma_{2}(s)\right)=u_{x}\left(\gamma_{1}(s), \gamma_{2}(s)\right) \gamma_{1}^{\prime}(s)+u_{y}\left(\gamma_{1}(s), \gamma_{2}(s)\right) \gamma_{2}^{\prime}(s) .
$$

Furthermore, taking the second derivatives (along γ) we obtain:

$$
\begin{gathered}
\varphi^{\prime}(s) \equiv\left(u_{x}^{\prime}\right)_{s}^{\prime}=u_{x x}^{\prime \prime} \gamma_{1}{ }^{\prime}+u_{x y}^{\prime \prime} \gamma_{2}^{\prime}(s) \\
\psi^{\prime}(s) \equiv\left(u_{y}^{\prime}\right)_{s}^{\prime}=u_{x y}^{\prime \prime} \gamma_{1}^{\prime}(s)+u_{y y}^{\prime \prime} \gamma_{2}^{\prime}(s)
\end{gathered}
$$

Now combining these equations with (1) we obtain a linear system on the second derivatives:

$$
\begin{aligned}
\gamma_{1}^{\prime} u_{x x}^{\prime \prime}+\gamma_{2}^{\prime} u_{x y}^{\prime \prime} & =\varphi^{\prime}(s) \\
\gamma_{1}^{\prime} u_{x y}^{\prime \prime}+\gamma_{2}^{\prime} u_{y y}^{\prime \prime} & =\psi^{\prime}(s) \\
a u_{x x}+b u_{x y}+c u_{y y} & =Q \equiv-\left(d_{1} u_{x}+d_{2} u_{y}+e u+f\right)
\end{aligned}
$$

which is uniquely solvable provided that the determinant

$$
D=\left|\begin{array}{ccc}
\gamma_{1}^{\prime} & \gamma_{2}^{\prime} & 0 \\
0 & \gamma_{1}^{\prime} & \gamma_{2}^{\prime} \\
a & b & c
\end{array}\right|=a{\gamma_{2}^{\prime}}^{2}-b \gamma_{1}^{\prime} \gamma_{2}^{\prime}+c{\gamma_{1}^{\prime 2} \neq 0}^{2}
$$

In particular, the Cauchy data determines all second-order derivatives along γ if and only if $D \neq 0$. It is natural, therefore, to call γ to be characteristic if

$$
a{\gamma_{2}^{\prime}}^{2}-b \gamma_{1}^{\prime} \gamma_{2}^{\prime}+c \gamma_{1}^{\prime 2}=0 .
$$

The principal symbol

Let us introduce the following quadratic form:

$$
\sigma\left(\xi_{1}, \xi_{2} ; x, y\right)=a(x, y) \xi_{1}^{2}+b(x, y) \xi_{1} \xi_{2}+c(x, y) \xi_{2}^{2}
$$

One distinguishes the following three cases (depending on the point (x, y) :
(i) $\quad b^{2}-4 a c>0$, there are two characteristics, and (1) is called hyperbolic
(ii) $\quad b^{2}-4 a c=0$, there are only one characteristic, and (1) is called parabolic
(iii) $\quad b^{2}-4 a c<0$, there are no characteristics, and (1) is called elliptic

Examples:

- The wave equation $u_{x x}^{\prime \prime}-u_{y y}^{\prime \prime}=0$ is a hyperbolic equation
- The heat equation $u_{x x}^{\prime \prime}-u_{y}^{\prime}=0$ is a parabolic equation
- The Laplace equation $u_{x x}^{\prime \prime}+u_{y y}^{\prime \prime}=0$ is an elliptic equation

How to find characteristics?

If γ is given as a graph $y=y(x)$ then

$$
\gamma_{1}=s, \quad \gamma_{2}=y(s)
$$

hence $D=0$ becomes

$$
a y^{\prime 2}-b y^{\prime}+c=0 .
$$

This proves that characteristics satisfy an ordinary differential equation

$$
\frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

How to reduce a principal linear PDE to a canonic form?

First solve the above ODE to determine exact form of solutions $y_{1}(x)$ and $y_{2}(x)$. In the hyperbolic case one introduces the new coordinates, say,

$$
\lambda(x, y)=y_{1}(x)-y \quad \text { and } \quad \mu(x, y)=y_{2}(x)-y
$$

which diagonalize the principal part. Next, one calculates the old derivatives $u_{x}^{\prime}, u_{x x}^{\prime \prime}$ etc. in the new coordinates.

Example (1998-03-16)

Study the equation

$$
\frac{3}{4} u_{x x}^{\prime \prime}-2 y u_{x y}^{\prime \prime}+y^{2} u_{y y}^{\prime \prime}+\frac{1}{2} u_{x}^{\prime}=0
$$

a) Where the equation is hyperbolic?
b) Determine the characteristic curves.
c) Transform the equation to canonical form where this is possible.
d) Determine the general solution in the domain where it is hyperbolic.

Solution.

a) The principal symbol is $\frac{3}{4} \xi_{1}^{2}-2 y \xi_{1} \xi_{2}+y^{2} \xi_{2}^{2}$ with discriminant

$$
b^{2}-4 a c=4 y^{2}-3 y^{2}=y^{2} \geq 0 .
$$

Hence our equation is hyperbolic everywhere outside the x-axis, that is when $y \neq 0$, where our equation has parabolic type. Denote by $U=\{(x, y): y \neq 0\}$.
b) The characteristic equation has the form:

$$
\frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-2 y \pm y}{3 / 2}=\left\{-2 y,-\frac{2}{3} y\right\}
$$

We assume that $y>0$ (the remained case is symmetric). Then by solving $y^{\prime}(x)=-2 y$ and $y^{\prime}(x)=-\frac{2}{3} y$ we find equations for the characteristic curves:

$$
\lambda:=\ln y+2 x=\text { const }, \quad \mu:=3 \ln y+2 x=\text { const }
$$

Figure 1 The characteristic lines: $\boldsymbol{\mu}=\boldsymbol{c o n s t}$ colored by green and $\boldsymbol{\lambda}=\boldsymbol{c o n s t}$ colored by green
c) We have $y=E^{-1}$, where $E=\exp \frac{\lambda-\mu}{2}$ and $x=\frac{3 \lambda-\mu}{4}$. In the new coordinates

$$
\begin{aligned}
& u_{x}^{\prime}=2 u_{\lambda}^{\prime}+2 u_{\mu}^{\prime} \\
& u_{y}^{\prime}=\frac{1}{y} \cdot u_{\lambda}^{\prime}+\frac{3}{y} \cdot u_{\mu}^{\prime}=\left(u_{\lambda}^{\prime}+3 u_{\mu}^{\prime}\right) \cdot \exp \frac{\lambda-\mu}{2}
\end{aligned}
$$

and setting, we find

$$
\begin{aligned}
& u_{x x}^{\prime \prime}=2 \cdot\left(u_{x}^{\prime}\right)_{\lambda}^{\prime}+2 \cdot\left(u_{x}^{\prime}\right)_{\mu}^{\prime}=4 u_{\lambda \lambda}^{\prime \prime}+8 u_{\lambda \mu}^{\prime \prime}+4 u_{\mu \mu}^{\prime \prime} \\
& u_{x y}^{\prime \prime}=2 \cdot\left[\left(u_{\lambda}^{\prime}+3 u_{\mu}^{\prime}\right) E\right]_{\lambda}^{\prime}+2 \cdot\left[\left(u_{\lambda}^{\prime}+3 u_{\mu}^{\prime}\right) E\right]_{\mu}^{\prime}=\left(2 u_{\lambda \lambda}^{\prime \prime}+8 u_{\lambda \mu}^{\prime \prime}+6 u_{\mu \mu}^{\prime \prime}+2 u_{\mu}^{\prime}\right) E \\
& u_{y y}^{\prime \prime}=\left[\left(u_{\lambda}^{\prime}+3 u_{\mu}^{\prime}\right) E\right]_{\lambda}^{\prime} \cdot E+3 \cdot\left[\left(u_{\lambda}^{\prime}+3 u_{\mu}^{\prime}\right) E\right]_{\mu}^{\prime} \cdot E=\left(4 u_{\lambda \lambda}^{\prime \prime}+8 u_{\lambda \mu}^{\prime \prime}+4 u_{\mu \mu}^{\prime \prime}\right) E^{2}
\end{aligned}
$$

Hence substituting the found relations into initial equation yields

$$
\frac{3}{4} u_{x x}^{\prime \prime}-2 y u_{x y}^{\prime \prime}+y^{2} u_{y y}^{\prime \prime}+\frac{1}{2} u_{x}^{\prime}=-4 u_{\lambda \mu}^{\prime \prime}-4 u_{\mu}^{\prime}=0
$$

We have

$$
u_{\lambda \mu}^{\prime \prime}+u_{\mu}^{\prime}=0
$$

is the desired canonical form.
d) In order to find the general solution we write the latter equation as $\left(u_{\lambda}^{\prime}+u\right)_{\mu}^{\prime}=0$, hence

$$
u_{\lambda}^{\prime}+u=f(\lambda)
$$

for arbitrary $f(\lambda)$. Solving this linear ODE yields

$$
u=g(\mu) e^{-\lambda}+f_{1}(\lambda)
$$

for a new function f_{1}. Thus the general solution is found as

$$
u=F_{1}(\mu) e^{-\lambda}+F_{2}(\lambda)
$$

where both function can be chosen arbitrarily.

