Lecture 6: The one-dimensional homogeneous wave equation

We shall consider the one-dimensional homogeneous wave equation for an infinite string

$$
u_{t t}-c^{2} u_{x x}=0, \quad x \in \mathbb{R}, t>0
$$

Recall that the wave equation is a hyperbolic $2^{\text {nd }}$ order PDE which describes the propagation of waves with a constant speed $c \neq 0, c \in \mathbb{R}$.

By the method of characteristics described earlier, the characteristic equation according to equation for the wave equation is

$$
d x^{2}-c^{2} d t^{2}=0
$$

which reduces to $d x \pm c d t=0$. The integrals are straight lines

$$
x+c t=c_{1}, \quad x-c t=c_{2}
$$

Introducing the characteristic coordinates

$$
\lambda:=x+c t, \quad \mu:=x-c t
$$

we find the canonical form

$$
-4 c^{2} u_{\lambda \mu}=0
$$

which implies (because $c \neq 0$)

$$
u_{\lambda \mu}=0
$$

Integrating with respect to λ, we obtain

$$
u_{\mu}=g(\mu)
$$

where g is an arbitrary function of μ. Integrating again with respect to μ, we find

$$
u=\int g(\mu) d \mu+F(\lambda)=G(\mu)+F(\lambda)
$$

where F and G are arbitrary twice differentiable functions. The general solution of the latter equation is then found as

$$
\begin{equation*}
u(x, t)=F(x+c t)+G(x-c t) \tag{*}
\end{equation*}
$$

Remark. The fact that $u(x, t)$ is a sum of two functions in one variable usually is interpreted as a superposition of two waves propagating with a constant shape in opposite directions along the x-axis.

As an example we consider the superposition of two (soliton-like) waves with generating functions (amplitudes)

$$
F(x)=\frac{1}{\cosh (x-1)}, \quad G(x)=\frac{4}{\cosh (x+2)}
$$

Waves with different times are pictured by different colors (see Figure 1) and the full time evolution is shown on Figure 2:

In general, the superposition form of the found above general solution shows that the domain of existence (and regularity) of the solution is quite specific. Namely, if we assume that both $F(s)$ and $G(s)$ are of class C^{2} in the interval $(a, b) \subset \mathbb{R}$ then $u(x, t)$ is of class C^{2} in a rectangle domain

$$
a<x \pm c t<b
$$

which is called rectangles of characteristics (see the picture below).

The initial value problem

Let us consider the following Cauchy problem for the above wave equation:

$$
u(x, 0)=g(x), \quad u_{t}^{\prime}(x, 0)=h(x)
$$

where g and h are the initial amplitude and velocity respectively. Using the representation (*) yields the system

$$
\begin{aligned}
u(x, 0) & =g(x)=F(x)+G(x) \\
u_{t}(x, 0) & =h(x)=c F^{\prime}(x)-c G^{\prime}(x) .
\end{aligned}
$$

Integrating the later equation, obtain

$$
F(x)-G(x)=\frac{1}{c} \int_{0}^{x} h(s) d s+C
$$

and combining this with the former equation we find from the obtained linear system that

$$
\begin{aligned}
& F(x)=\frac{1}{2} g(x)+\frac{1}{2 c} \int_{0}^{x} h(s) d s+\frac{C}{2} \\
& G(x)=\frac{1}{2} g(x)-\frac{1}{2 c} \int_{0}^{x} h(s) d s-\frac{C}{2}
\end{aligned}
$$

for some new constant C_{1}.
Substituting the found relations, this yields the celebrated d' Alembert's formula for the Cauchy problem of the one-dimensional homogeneous wave equation:

$$
u(x, t)=\frac{g(x+c t)+g(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s
$$

Jean le Rond d'Alembert (1717-1783), a French mathematician and physicist

Some conclusions from d'Alembert's formula

- A straightforward calculation shows that d'Alembert's formula gives a C^{2}-solution to the above Cauchy problem provided that $g \in C^{2}$ and $h \in C^{1}$.
- Moreover, the smoothness of $u(x, t)$ is prescribed by that of its initial conditions, for instance, if $g \in C^{p+1}$ and $h \in C^{p}$ then $u(x, t)$ is a C^{p+1}-solution.
- The solution is unique and $u(x, t)$ depends continuously on the data. Hence the Cauchy problem for the wave equation is well posed. In other words, a small change in either g or h results in a correspondingly small change in the solution $u(x, t)$.
- One can see from the d'Alembert formula (see also the picture above) that the solution at some point $\left(x_{0}, t_{0}\right)$, where $x_{0} \in \mathbb{R}, t_{0} \geq 0$, is completely determined by the initial data in the following interval (the domain of dependence for $\left(x_{0}, t_{0}\right)$):

$$
x_{0}-c t_{0} \leq x \leq x_{0}+c t_{0}
$$

Physically, this property is equivalent to the finite propagation speed of signals:

- The later property provides also the background of special relativity (considered firstly by Hendrik Lorentz and Henri Poincaré, and later by Albert Einstein). The cone above then is the so-called light cone in the space-time.

Parallelogram rule

Return to the general solution given above,

$$
u(x, t)=F(x+c t)+G(x-c t) .
$$

Recall our notation $\lambda=x+c t, \mu=x-c t$, and consider some functions $F(\lambda)$ and $G(\mu)$ and a rectangle $A B C D$ in the $\lambda \mu$-plane as shown in Figure 3 below:

Figure 3

Figure 4

Since $F(\lambda)$ is constant along vertical lines and $G(\mu)$ is constant along horizontal lines, we have

$$
F(A)=F(D), \quad F(B)=F(C), \quad G(A)=G(B), \quad G(C)=G(D) .
$$

Using our representation $u(\lambda, \mu)=F(\lambda)+G(\mu)$ we find

$$
\begin{equation*}
u(A)+u(C)=u(B)+u(D) \tag{}
\end{equation*}
$$

that is the sums of the values of u at opposite vertices are equal. Translated to the $x t$-plane (see Figure 4), we view the previous relation as a parallelogram rule for solutions (recall that the sides of the latter parallelogram are segments of characteristics).

Application I: weak (generalized) solutions

It is natural to expect that the above formula defines a (generalized) solution when the functions F and G are no longer of class C^{2}. Let us assume that the initial condition $g(x)$ contains a discontinuity at some x_{0} and $h(x)$ is a smooth function, say $h \equiv 0$. It follows from d'Alembert formula that

$$
u(x, t)=\frac{1}{2}(g(x+c t)+g(x-c t))
$$

will be discontinuous at each point (x, t) such that $x \pm c t=x_{0}$, that is, at each point of the two characteristic lines intersecting at the point $\left(x_{0}, 0\right)$. This means that

At each point of the characteristic lines, the partial derivatives of the function $u(x, t)$ fail to exist, and hence, u can no longer be a solution of the Cauchy problem in the usual sense. However, such a function may be recognized as a weak, or a generalized solution of the Cauchy problem.

Definition. A generalized solution of the wave equation is any function $u(x, t)$ satisfying $\left({ }^{* *}\right)$ for every such parallelogram in its domain.

Example 1. Let $F(x)=|x|$ and $G \equiv 0$. For simplicity we assume that $c=1$. Then

$$
u=|x-t|+|x+t|
$$

is the weak solution in the sense of the definition given above. (Notice that u is just a continuous function!).

Application II: the reflection method (a semi-infinite string)

Another useful application of the above 'parallelogram rule' is the so-called reflection method. We explain it for the case when the initial/boundary problem for semi-infinite vibrating string:

$$
u_{t t}^{\prime \prime}-c^{2} u_{x x}^{\prime \prime}=0
$$

is given in the wedge $x \geq 0, t \geq 0$:

$$
\begin{array}{ll}
u(x, 0)=g(x), \quad u_{t}^{\prime}(x, 0)=h(x), & x>0, t=0, \\
u(0, t)=0, & x=0, \quad t>0
\end{array}
$$

and the compatibility condition holds: $g(0)=h(0)=0$.
Solution by the reflection method. For any point $\left(x_{0}, t_{0}\right)$ in the lower infinite triangle $x \geq t \geq 0$ (see the picture below) $u(x, t)$ can be found by the d'Alembert formula by using the initial problem on interval $(x-t, x+t)$:

In the upper infinite triangle, $0 \leq x \leq t$ we also consider an arbitrary point (x, t) and draw characteristics from this point, and reflect one characteristic which meets the t-axis as shown in the picture:

Then by parallelogram rule we have

$$
u(x, t)=u(A)+u(B)-u(C)
$$

Here

$$
A=(0, c t-x), \quad B=\left(\frac{x+c t}{2}, \frac{x+c t}{2 c}\right), \quad C=\left(\frac{c t-x}{2}, \frac{c t-x}{2 c}\right) .
$$

Hence setting $\xi_{1}=\frac{x+c t}{2}$ and $\xi_{2}=\frac{c t-x}{2}$, we get

$$
u(x, t)=u(0, c t-x)+u\left(\xi_{1}, \frac{\xi_{1}}{c}\right)-u\left(\xi_{2}, \frac{\xi_{2}}{c}\right)
$$

An taking into account the boundary condition $u(0, \tau)=0(\tau>0)$ and that along the diagonal:

$$
u\left(\xi, \frac{\xi}{c}\right)=\frac{1}{2}[g(2 \xi)+g(0)]+\frac{1}{2 c} \int_{0}^{2 \xi} h(s) d s .
$$

we obtain finally

$$
u(x, t)=\frac{1}{2}[g(x+c t)-g(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} h(s) d s
$$

Eigenfunctions approach (a finite string)

Now we demonstrate apply the Fourier method to the Cauchy problem for a finite string, say of length L,

$$
u(x, 0)=g(x), \quad u_{t}^{\prime}(x, 0)=h(x), \quad x \in(0, L)
$$

and fixed at both ends:

$$
u(0, t)=u(L, t)=0, \quad t \geq 0 .
$$

Applying the Fourier method of separation of variables we look for a solution given by the trigonometric series (we skip here the question about convergence) below:

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n}(t) \sin \frac{n \pi x}{L}
$$

(Notice that the boundary condition is satisfied automatically). Substitution of u yields

$$
a_{n}^{\prime \prime}(t)=-\left(\frac{n \pi c}{L}\right)^{2} a_{n}(t)
$$

hence $a_{n}(t)=\alpha_{n} \cos \frac{n \pi c}{L} t+\beta_{n} \sin \frac{n \pi c}{L} t$. Notice that

$$
a_{n}(0)=\alpha_{n}, \quad a_{n}^{\prime}(0)=\frac{n \pi c}{L} \beta_{n}
$$

In order to determine the constants we apply the Cauchy and boundary conditions:

$$
\begin{gathered}
g(x)=u(x, 0)=\sum_{n=0}^{\infty} a_{n}(0) \sin \frac{n \pi x}{L}=\sum_{n=0}^{\infty} \alpha_{n} \sin \frac{n \pi x}{L}, \\
h(x)=u_{t}^{\prime}(x, 0)=\sum_{n=0}^{\infty} a_{n}^{\prime}(t) \sin \frac{n \pi x}{L}=\frac{n \pi c}{L} \sum_{n=0}^{\infty} \beta_{n} \sin \frac{n \pi x}{L} .
\end{gathered}
$$

Hence, expending $g(x)$ and $h(x)$ in the trigonometric series in $[0, L]$ (notice that it is reasonably to require $g(0)=g(L)=h(0)=h(L)=0$) we find α_{n}, β_{n}.

Example 2. Determine the solution fo the following problem

$$
\begin{gathered}
u_{t t}=u_{x x}, \quad 0<x<\pi, \quad t>0, \\
u(x, 0)=2 \sin x-\sin 2 x, \quad u_{t}(x, 0)=0, \quad x \in[0, \pi], \\
u(0, t)=u(\pi, 0)=0, \quad t>0 .
\end{gathered}
$$

Solution. We have $g(x)=2 \sin x-\sin 2 x$, hence $\alpha_{1}=2, \alpha_{2}=-1$ and $\alpha_{n}=0, n \geq 3$. Similarly $\beta_{n}=0$ for all n. Hence

$$
a_{n}(t)=\alpha_{n} \cos \frac{n \pi c}{L} t=\alpha_{n} \cos n t
$$

and we obtain: $u(x, t)=a_{1}(t) \sin x+a_{2}(t) \sin 2 x=2 \cos t \sin x-\cos 2 t \sin 2 x$.

