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Lecture 7: The wave equation, II  

• Problem I: the nonhomogeneous wave equation  with homogeneous IC:  

The nonhomogeneous wave equation 

Now we consider the nonhomogeneous (NH) wave equation on the real line  

 

subject to the following initial conditions (IC):  

Remark: Solution of the NH equation can be represented as a sum of two other solutions:  

 

• Problem II: the homogeneous wave equation  with nonhomogeneous IC: 

 

Thus, it suffices only to consider the first problem. We apply the method due to Duhamel (Jean 
Marie Constant Duhamel (1797–1872), a French mathematician). 

Namely, consider an auxiliary problem 

  or      

             for     

Here  is the right hand side in our equation given above.  

 

Duhamel’s principle.  Assume that  is a -function of and , continuous in 
,  . If  solves the above auxiliary problem, then solution of the Problem I is given by 

 

Proof. Apply differentiation with respect to parameter, 

 

This formula holds if  and  are continuous. In our case , thus 

 

and applying , we find 
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Differentiate again and apply the second initial condition: 

 

Differentiation with respect to  yields 

 

hence, combining the found formulas we get 

 

 

Corollary. The solution of Problem I is given by the following explicit formula  

 

Proof. Apply d’ Alembert’s formula. 

 

Example 1. Find the solution of  

 
with the initial conditions:    

Solution. We have , where  

•  is solution to ,    
•  is solution to ,  . 

We find  by Duhamel principle: 

 

Similarly, applying d’ Alembert’s formula to  and , we find : 

 

Thus, the solution is  
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The higher-dimensional wave equation 

Consider now the Cauchy problem 

 

 

, . We shall assume, if not explicitly stated otherwise, that  is twice 
continuously differentiable for . 

                     

                                                                                                                                                             

Motivation: The two-dimensional case 

We demonstrate Poisson’s method of spherical means by the two-dimensional case, . Let 
us denote by  an arbitrary point and define for  and the following aver-
age integral: 

 

                                                             

                                                                              

                                                 

                                                                                                     

 

Let  be the solution of the Cauchy problem and . Then 

 

 

On the other hand, substitution of  yields 

 

Hence the solution can be recovered from  Differentiating  with respect to  we find 

 

where  is the outward unit normal to the circle  and  is the length 
element along the circle of radius .   
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Applying the divergence theorem we find 

 

and using   we obtain 

 

(  is the disk with boundary ). Write the inner integral in the polar coordinates (center at ) 

 

We obtain   

 

which yields finally 

 

 

(See Appendix for the proof). 

The general case:  Euler-Poisson equation 

Define the spherical mean of a continuous function  in , , by  

 

where  denotes is the normalization constant (the area of the unit sphere in ) and  
denotes the surface measure. As above, we have  

 

Euler-Poisson equation. Let  be the solution of the Cauchy problem 

 

 Then  is twice continuously differentiable function and  
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Application I: The three-dimensional case 

If  the Euler-Poisson equation takes the form 

     

Setting  we arrive at the one-dimensional wave equation: 

 

Translating the initial conditions we find                                                                                                     

 

Recall also that in order to recover  we set : 

 

Hence we need to determine  for small  To this end we apply the d’ Alembert formula for 
semi-infinite string (obs.!: with respect to  and ) for the upper-triangle  

 

This yields the Kirchhoff formula 

 

From this formula we infer: 

• the Cauchy problem in  is well-posed 
 

• the domain of dependence of a point  with  is the sphere with center at 
 and of radius . In contrast with the 1-dimensional case, we have a dif-

ferent phenomenon: not a ball, but its boundary (sphere) has influence on the point . 

 

Example 2. We demonstrate the above method by solving the following Cauchy problem:  

 

 

Solution. The first average is 

 

because the average of any combination  with at least one odd exponent must be zero.  
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The same argument yields 

 

The latter integral can be found by the following useful trick. Denote by  the average of  
Then by symmetry,  and  

 

hence  

 

We have . Hence we find the auxiliary function : 

 

 

Differentiating the last equality w.r.t.  we find : 

 

                                                      ■ 

 

Conservation of energy 

Energy of a function is the following integral (if well defined) 

 

Otherwise, we set . Differentiating the integral yields 

 

 

It follows that .  

Remark. This implies uniqueness because if  and  are two solutions to one Cauchy prob-
lem then  has zero initial energy.  
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Appendix *: Derivation of Euler-Poisson- equation 

Proof. The fact that  is two times continuously differentiable in  follows from stan-
dard facts on differentiability of an integral depending on parameters. The situation with pa-
rameter  requires however a further analysis because the set  itself depends on .  

Step 1: We show that  is continuously differentiable in  and  

 

We consider an auxiliary function  

 

For we have  

 

where  is the spherical shell with the boundary equipped with outward 
normal,  , see the picture below: 

                                                                                        

 

                                                                                                 

 

The unit vector-field  coincides with the gradient of the distance function (check!) 

 

Moreover, the divergence of this vector-field is 

 

On the other hand, the unit normal vector at  is  

 

In particular: . Applying the divergence theorem we obtain 
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Applying Fubini’s theorem we find 

 

and it follows easily that the following limit exists 

 

(and similarly for the left limit). Thus   is (continuously) differentiable and  

 

Next, apply the above formula for  and recall that the normal  coincides with : 

 

Applying the divergence theorem again, we get 

 

On the other hand, 

 

Recalling the definition of  we obtain 

 

It follows also from the above argument that differentiability of  is equivalent to that of 

integral  But this integral is differentiable because the Laplacian  is 

a continuous function in all parameters. 

Step 2. We return to our formula for  and apply to it our wave equation: 

 

Differentiation of the latter identity w.r.t.  yields  

 

which implies the desired equation:  The initial conditions 
 and  follow now from the definition.      QED.  


