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Lecture 8: The Laplace and Poisson equations 

Now we consider boundary-value problems.  

• Mathematically, a boundary-value problem is finding a function which satisfies a given 
partial differential equation and particular boundary conditions.  

• Physically speaking, the problem is independent of time, involving only space coordinates.  

Just as initial-value problems are associated with hyperbolic PDE, boundary value problems 
are associated with PDE of elliptic type. In contrast to initial-value problems, boundary-value 
problems are considerably more difficult to solve.  

The main model example of an elliptic type PDE is the Laplace equation  

 

where   and  is a domain in . Solutions of this equation are called 
harmonic functions. This equation can also be thought as the wave equation  

 

with infinite `sound velocity’  .  

There are two main modifications of the Laplace equation: the Poisson equation (a non-
homogeneous Laplace equation): 

 

and the eigenvalue problem (the Helmholtz equation) 

 

All above equations are of elliptic type (there are no characteristics).  

Definition. A function is said to be harmonic in a domain  if it satisfies the Laplace equation 
and if it and its first two derivatives are continuous in . 

Variational derivation of the Laplace equation 

Derivation of an equation which contains the Laplacian (Laplace operator ) usually is con-
cerned with minimization problems.  For instance, if we minimize the Dirichlet integral  

 

among all smooth enough functions  with given boundary values, say 

 

then we arrive at the Dirichlet problem for the Poisson equation. We give below an heuristic 
argument how to derive the Laplace equation (that is if ). 
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A non-trivial component of any variational problem is to establish the existence of solution. If 
we know, however, that a solution does exist we can apply the standard variational argument 
which dates back to Pierre de Fermat. In our case, let us assume that  is a solution, that is 

 for `any’  such that the boundary condition (1) is satisfied. This means that for 
any  and any function  with zero boundary data the linear combination  

 

satisfies (1). Then the above inequality yields for any  

 

Simplifying we find 

 

This inequality immediately yields: , and applying the divergence theo-
rem together with the zero boundary condition (  on  we obtain  

 

The equality  in  follows now from the fundamental lemma of calculus of variations.  

Remark. When , any harmonic function (locally) is the real part of some holomorphic 
function. This fact has many applications in hydrodynamics.  

 

 

                                

Potential theoretic interpretations 

Similar, if we minimize  among all  which satisfy (1), we obtain the Poisson equa-
tion. We briefly mention the potential interpretation of the Poisson equation.   

The function  (  denotes as usually the area of the unit sphere in ) is the densi-
ty of masses distributed in the body  produced the potential  inside the body:  

                                                                                    - the gravitational force   

 

Outside the body, the potential is a harmonic function – a solution of a homogeneous Laplace 
equation. Similarly, one can consider a potential electric field with the gradient  and the 
charge density .   
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The well-known inverse problem in potential theory asks whether there exist two different 
bodies in  having the same potentials outside the union of bodies. 

 

Separation of variables 

Problem 1. Solve the two-dimensional Laplace equation 

 

in the rectangle  with the boundary conditions: 

 

where  .   

Solution. It is natural to apply the Fourier method of separation of variables described earli-
er for the wave equation. Namely, consider solutions given by the ansatz 

 

This implies  and due to independency of  and  we find that 

 

where  is some constant. Then the boundary conditions above imply  

 

Consider the first equation: since  and , we have either  or 
, say . The resulting equation  gives then a series of solutions with 

zero-boundary condition: 

 

The corresponding . Using the found , we have for the second component  

, 

that is the solution is found by means of the hyperbolic functions: 

 

The boundary condition  yields . In summary, we have the series of solutions 

 

Let us assume that our solution can be found as a (formal) sum of the ansatz-solutions found 
above, that is 
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Applying the remained boundary condition  we find 

 

The numbers  now can be found by the Fourier expansion of .  

 

Problem 2. Let  be the unit disk. Solve the following problem: 

 

Solution. Here  is some continuous function on the unit circle (where  is the polar 
angle, i.e.  ). Rewriting the Laplacian in the polar coordinates yields (verify this!) 

 

for  and . Here  is the polar radius. The boundary condition 
takes then the form 

 

The new change of variables, , readily yields  

 

This reduces our original boundary problem in the disk to the rectangular boundary prob-
lem: 

                                                                     

                                                             

                                                                       

 

                                                                                                                                                        

Applying the product form:  we see that  must be -periodic, be-
cause we are looking for a continuous solution. Thus  
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The constant  must be positive to be consistent with the fact that  is a periodic function. 
Taking into account that is actually -periodic, we write 

 

We find then  and this yields a relation for :  We have 

 

Since  

 

we obtain the final form of solution: 

 

On the other hand, taking into account that the desired solution must be continuous in the 
unit disk, we conclude that all , hence 

 

This yields  

 

In order to determine  and , we apply the boundary condition: 

 

Hence  and  are the Fourier coefficients of . Notice that it follows from the above 
formula that .  

Remark 1. Applying Abel’s theorem on power series, we conclude that the series  con-
verges in the open unit disk. 

 

• We encounter here a new phenomenon: as it is seen from the previous examples, the 
Laplace equation in a bounded domain may be overdetermined, that is one can not 
specify both  and  along the boundary.  

Some corollaries 

 
• The first type of boundary problem, ,  is called the Dirichlet problem, the 

second,  , is called the Neumann problem 
 

• Sometimes one considers a mixed problem, by prescribing both the Dirichlet and the 
Neumann data on some pieces of the boundary. 
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Green’s identities  

First we recall two simple corollaries of the divergence theorem for functions  
where  is a bounded open set in  with piecewise smooth boundary. Namely, 

 

and its skew-symmetric analogue: 

 

Now we list some important corollaries of the Green identities. 

Theorem (Uniqueness of solution of the Dirichlet problem). Let  and  be harmonic 
functions with equal boundary values:  on , where  is some bounded open set. Then 

 in .  

Proof. Let  in . Then substitution of  into the first Green’s identity implies  

 

Observe that the latter integral is strictly positive unless  is a constant. Set , then 
 on the boundary of . Hence the left hand side of the above integral identity is zero.  It 

follows that  in , hence . But  on , hence  The theorem 
is proved. ■ 

Remark 2. If one applies the above argument to the Neumann problem, then the constant  
in the proof may not be zero. Thus the Neumann problem determines the solution uniquely 
up to an additive constant.  

Moreover, taking   in the first Green’s identity we obtain the following  

Theorem (Necessary condition for the Neumann condition). Let  be a harmonic function 
with the Neumann boundary condition . Then 

 

i.e. the average of  over the boundary equals zero: .  

Remark 3. The latter theorem shows that the Neumann condition  can’t be chosen arbitrari-
ly (cf. Problem 2 above, ).  

 


