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Lecture 9: The fundamental solution 

The co-area formula

Therefore we have 

 

  

Let  be a bounded domain and  be a function of class . Denote by 
 the -level set of . Let  be a continuous function in . Then  

 

where  is the surface measure on . In fact, the exterior integral should be taken only 
over the interval of those  for which  is non-empty. 

Example 1 (Spherical Fubini theorem). When  is the 
distance function we have  

 

Chose the domain in the co-area formula 

 

the -dimensional ball centered at  of radius . In this case  is non-empty for  
and the level sets are spheres . Then applying the co-area formula gives 

 

Example 2. (The volume and the area of an -dimensional ball).We apply the previous result 
to , we find the volume of the ball of radius : 

 

Observe that  and  

 

where  is the area of the unit sphere in . Then 
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Since 

Radial symmetric solutions of the Laplace equation  

We start with finding a radial symmetric solution   of the Laplace equation in , 
 where . We have the following idenitites:  

 

 

Therefore  

 

Integrating this equation yields the following property. 

Radial symmetric harmonic functions: 

 

 

Theorem (The Mean-value property). Let  be a harmonic function in the closed disk . 
Then 

 

 

Proof. We consider here the case  . Without loss of generality we can assume that . 
Let   and apply the second Green’s identity with  and  

 

for the domain . Then  is harmonic in , radially symmetric and 
vanishes on the exterior boundary:  on  .  Therefore  

 

Here  (all the boundaries are oriented by the outward normal) and we 
used the expression for the normal derivative on the sphere of radius :   

 . 
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we obtain 

 

Notice that   

 

where  is the maximum value of in a small ball. Hence the left hand side of (1) 
converges to zero as . Since , it follows then 

 

Since , we have proved the first identity  

 

Rewrite this identity for  as 

 

Integrating then between 0 and  and applying the spherical Fubini’s theorem yields 

 

It remains only to notice   .          ∎ 

 

An alternative definition of harmonicity.  The mean-value property is also used as an 
equivalent definition of harmonicity. Namely, a function  defined in a domain  and 
integrable there is called harmonic if for any ball   
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Theorem (The strong maximum principle). Suppose  is harmonic inside of a connected 
bounded open set   and continuous in the closed domain  . Then  

 

Furthermore, if there is a point  such that , then .  

Remark. Geometrically, the maximum principle says that the graph of a harmonic function is 
a saddle surface:  

 

 

 

 

 

 

Proof. Notice that  is continuous in the closed domain, hence it attains its maximum value 
there. Denote the maximum by  

. 

Assume now that . Then the maximum value must attained at some interior 
point, say . We have . Now we consider a ball  of a small enough 
radius such that the ball is contained in . Applying the mean value property we obtain 

 

But this bilateral inequality implies  in , in particular, the set  of all points 
satisfying   is open. On the other hand, this set  is closed because  is a continuous 
function in the ball. Since   is connected, we conclude that , hence   in the whole 

. But this contradicts our assumption (recall again that  is continuous in the closed 
domain). This proves that the maximum is attained on the boundary:  . 

The second assertion follows easily from the above argument. The theorem is proved. ■ 

Corollary 1 (Uniqueness) Let   and  on the boundary . Then 
 in . 

Corollary 2 (Uniqueness of the Dirichlet problem) Let g  and . 
Then there exists at most one solution  of the boundary-value  problem  
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The fundamental solution 

The radial symmetric harmonic function 

 

is called the fundamental solution of the Laplace equation. The reason why namely this 
normalization is chosen becomes clear later. Notice also that  has a singularity at the 
origin.  

Theorem (The characteristic property of the fundamental solution). Let  be a twice 
continuously differentiable function with compact support, that is   outside some 
compact set in . Then  

 

Proof. Find  such that  for . Notice that  

 

is integrable in  (in the improper sense). Indeed,  is continuous, hence bounded. 
The only singular point for is the origin. But there it is integrable because  is 
integrable for  and  is integrable in  for  (apply the spherical Fubini 
theorem).  

Therefore, removing a small ball with center at the origin, , we obtain for 
the improper integral: 

 

We apply the argument given described in the Mean Value Theorem. Again we can assume 
that . Notice that  and  on the boundary sphere  . Applying the 
Green identity and , we find 

 

where  and 

 

Since is bounded,  and  , we obtain 
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Next, noticing that  , we find  

 

and the theorem is proved. ∎ 

Corollary (Solution of the Poisson equation). Let  be twice continuously differentiable, 
and let  outside some compact set in . Define  

 

Then  and   in . 

 

Appendix: the Dirac delta-function  

Another equivalent formulation of the above characteristic property of the fundamental 
solution is  

 

where  is the Dirac delta. Indeed, we use the following naïve definition of  : the identity 

 

holds for any smooth function  having a compact support. There is no classic function which 
could satisfy the above identity, that is why the Dirac delta is called a generalized function.  

Consider the three-dimensional fundamental solution: 

 

Another way to write this is  

 

Comparing this with the characteristic property of the fundamental solution: 

 

implies the desired  formula  


