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Lecture 11: The heat equation 

Now we consider parabolic equations, that is equations with one characteristic (the characte-
ristic discriminant is zero). The main model example is the heat or diffusion equation in  

 

We already discussed the derivation of the heat equation (see Lecture 4) and know that it go-
verns the propagation (or diffusion) of the heat measured in terms of temperature  at 
the point  and time . In contrast to the wave equation when the constant  must be positive 
(it is the squared speed of waves), here the sign of the constant  is non-essential, and we 
shall assume in what follows that  (notice that the new function  sa-
tisfies the heat equation with ). 

It follows from the derivation of the heat equation that a reasonable initial condition is the 
distribution of the initial temperature, that is  

 

and, may be some other boundary data like Dirichlet or Neumann boundary values describing 
possible obstacles or conditions for behavior of the temperature on the boundary . 

The eigenfunctions method 

We try first to solve the heat equation subject to the most standard conditions: 

 

 

 

In order to be consistent with the second condition we assume that  on the boundary 
and that  is of class  inside the domain. Applying the separation of variables 

 we find  

 

 

where  is some constant.  In this notation, the second equation becomes the eigenvalue 
problem for the Laplace operator. Indeed, by the above boundary conditions above we have 

, . Multiplying  by  and integrating we obtain 

 

which shows that the constant  is non-negative: 
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We consider this eigenvalue problem below in more details but now describe briefly the 
strategy of solving the above boundary problem (1): 

i. Eq. (3) has a family of linear independent solutions  (eigenfunctions) parameterized 

by the eigenvalues ,  and normalized such that  
ii. Complete this family to an orthonormal  basis in  with the scalar product 

, that is  

 

where  is the Kronecker delta. 
iii. Any (continuous) function  in  can be written as the sum 

 

and the series converges uniformly on . 
iv. The solution of (1) can be found then in the form 

 

 

Let us demonstrate this method by the following example.  

Example 1. Solve  

 

 

 

Solution. The eigenvalue Dirichlet problem for the one-dimensional interval and the one-
dimensional Laplacian (the second derivative) leads to the trigonometric family 

 

which is well-known to be an orthogonal system on  with respect to the scalar product 

 

Notice that . We find 

 

Hence the solution is found as 
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Functional Analysis and operator theory methods recognize the Laplace operator as a self-
adjoint operator on the (infinite dimensional) space consisting of square-integrable func-
tions

Dirichlet eigenvalues and eigenfunctions of the Laplacian 

The general problem on eigenvalues and eigenfunctions of the Laplacian operator requires a 
deep familiarity with functional analysis, integral equations theory and even operator theory. 
Here we give a short outline of the basic approaches.  

The variational principle allows to reduce the original for finding of the eigenvalues Lap-
lace equation to the variational problem: find the minimum of the functional 

 

It turns out that the minimum  does exist and it is exactly the first eigenvunction 

 

where  is the smallest (non-zero) eigenvalue. The next step is to find the minimum of  
on the subspace consisting of all functions with zero-boundary values and orthogonal to , 
etc. This variational technique (Rayleigh quotient) allows to construct the eigenfunctions and 
eigenvalues step by step. 

Integral Equation Method allows to use the Green function of the domain  to define the 
following integral equation:  

 

Since the Green function is symmetric, one can solve the above equation similar to that for 
symmetric matrices:  

 

One needs a special technique, which generalizes the finite dimensional eigenvalue problem 
onto the infinite dimensional case. 

1

                                                 
1 One has to use the Lebesgue integral in order to obtain a complete vector space. 

 

 

Indeed, applying the 2nd Green identity to any two smooth functions  in  having zero 
boundary values, we obtain 
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Now we summarize the properties of the eigenvalues and eigenfunctions which follow from 
the general theory.  

• The eigenvalues  form a countable set and  as . 
• For each  there is only a finitely many linear independent eigenfunctions with 

this eigenvalue. 
• The first eigenvalue has multiplicity one. 
• Eigenfunctions corresponding to distinct eigenvalues are orthogonal. 

 

Example 2. We exemplify the above properties by eigenfunctions of the Laplacian in the rec-
tangle  

 

Then the eigenvalue problem can be solved by separation of variables method. Substitution of 
 for  leads to the following funcitons 

 

where the eigenvalues  are found easily to be 

 

Observe that for some configurations of  and   there multiple eigenfunctions. For example, 
if  then  

 

But it easy to see that for any number  there are only finitely many eigenvalues satis-
fyng  

In order to prove the orthogonality, notice that  

 

The coefficients of the expansion of  with zero boundary values in the double series  

 

is given by  
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It is reasonable to think of the `cover’  as the inner boundary, while regard the re-
mained exterior part of  as the factual boundary. This part is also called the parabolic 
boundary of .  

The maximum principle 

Notice that the time independent solutions of the heat equation satisfy the Laplace equation. 
On the other hand, the behavior of series  

 

makes it plausible to assume that the solution is stabilized ‘at infinity’, that is  be-
comes a harmonic function. In order to make this observation more rigorous we start first 
with the maximum principle for the heat equation. 

Consider the heat equation 

 

in the cylinder  

 

                                                                                                                             - the parabolic boundary 

                                                              

 

 

 

 

 

Theorem (Weak maximum principle) Let  be a smooth function (twice continuously dif-
ferentiable in  and continuously differentiable in ) in  and continuous up to the boundary. 
Let  satisfy the inequality  

 

Then  achieves its maximum on the parabolic boundary: 

 

Proof. First let us assume that a stronger inequality holds:   in  and consider a sub-
cylinder , .  
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Let  be a maximum on , where . Then  and, moreover,  
 (the matrix of second derivatives is non-positive definite). The latter implies 

 (the trace of the matrix is non-positive). Hence we get 

 

which contradicts our assumption. Similarly, if  is an inner point, we obtain the 
 and . 

Hence , and by continuity we obtain the desired in-
equality. 

Now we consider the original inequality and introduce an auxiliary function , 
 Clearly  We apply the previous argument: 

 

Hence 

. 

Letting  we arrive at the required inequality. ■ 

 

Corollary (Uniqueness).  If  as in theorem above are solutions to 

 

 

 

then . 

 


