Lecture 12: The heat equation

The fundamental solution

There is no a radial symmetric solution of the heat equation as in the case with the Laplace equation. Instead, we show that the function (the heat kernel)

$$u(x, t) = \frac{1}{t^\frac{n}{2}} e^{-\frac{|x|^2}{4t}}, \quad x \in \mathbb{R}^n, \ t > 0.$$

which depends symmetrically on x is a solution of the heat equation. Indeed,

$$u_t = -\frac{n}{2} t^{-\frac{n}{2}-1} e^{-\frac{|x|^2}{4t}} + \frac{n}{2} t^{-\frac{n}{2}} \frac{e^{-\frac{|x|^2}{4t}} |x|^2}{4t^2} = t^{-\frac{n}{2}-1} \frac{e^{-\frac{|x|^2}{4t}}}{2} \left(\frac{|x|^2}{2t} - n\right)$$

and

$$\Delta e^{-\frac{|x|^2}{4t}} = -\frac{1}{2t} \text{div} \left(\Delta e^{-\frac{|x|^2}{4t}} x\right) = -\frac{e^{-\frac{|x|^2}{4t}}}{2t} \left(n - \frac{1}{2t} |x|^2\right)$$

Hence $\Delta u - u_t = 0$.

The significance of this function for the heat equation theory is seen from the following property. We illustrate this by the two-dimensional case. First we modify slightly our solution and define the new function $\psi: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ by

$$\psi = \begin{cases}
\frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}} & t > 0 \\
0 & t \leq 0
\end{cases}$$

This function is called the fundamental solution of the heat equation in \mathbb{R}^2.

Theorem. The function ψ is locally integrable in \mathbb{R}^2, that is it is integrable on any bounded open set. Moreover, for any function $\phi(x, t) \in C^2(\mathbb{R}^2)$ having compact support the following identity holds

$$\int_{\mathbb{R}^2} \left(\frac{\partial \phi}{\partial t} + \frac{\partial^2 \phi}{\partial x^2}\right) \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}} \ dx = -\phi(0,0).$$

Proof. Observe that ψ is locally integrable. Indeed, we have

$$0 \leq \psi \leq \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}} \leq \frac{1}{2\sqrt{\pi t}}.$$

The latter square root function is integrable in any squares (why?)

$$Q = \{|x| \leq M, |t| \leq M\}, \ M > 0$$
Hence ψ is locally integrable in \mathbb{R}^2.

Let $\phi(x, t)$ be any twice differentiable function with compact support in \mathbb{R}^2. We chose M such that the support of ϕ is contained in the strip $|x| < M$. We know that

$$u = \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}}$$

is a solution of the heat equation for $t > 0$. Consider the following integral

$$I(\phi) = \int_{\mathbb{R}^2} \left(\frac{\partial \phi}{\partial t} + \frac{\partial^2 \phi}{\partial x^2} \right) \frac{1}{2\sqrt{\pi t}} e^{-\frac{x^2}{4t}} dx = \lim_{\varepsilon \to 0} \int_{Q_\varepsilon} \left(\frac{\partial \phi}{\partial t} + \frac{\partial^2 \phi}{\partial x^2} \right) u(x, t) dx = \lim_{\varepsilon \to 0} I_\varepsilon,$$

where $Q_\varepsilon = \{|x| \leq M, t > \varepsilon\}$. We find the last integral I_ε by splitting it into two parts:

$$I_1 = \int_\varepsilon^M dt \int_{-M}^M \phi_{xx} u \, dx$$

and

$$I_2 = \int_\varepsilon^M dt \int_{-M}^M \phi_t u \, dx.$$

By integrating the inner integral in I_1 by parts two times (recall that $\phi(\pm M, t) = \phi(x, \pm M) = 0$, hence the boundary values are equal to zero) we obtain

$$\int_{-M}^M u \phi_{xx} \, dx = \int_{-M}^M u \, d\phi_x = \phi_x \big|_{x=-M}^{x=M} - \int_{-M}^M u_x \phi_x \, dx = \int_{-M}^M u_{xx} \phi \, dx$$

Thus

$$I_1 = \int_\varepsilon^M dt \int_{-M}^M u_{xx} \phi \, dx$$

Similarly,

$$I_2 = \int_\varepsilon^M dt \int_{-M}^M u \phi_t \, dx = \int_{-M}^M dx \int_\varepsilon^M u \, d\phi = \int_{-M}^M dx \left(u\phi \big|_{t=\varepsilon}^M - \int_\varepsilon^M u_t \phi \, dt \right) =$$
In summary,

\[I(\epsilon) = l_1 + l_2 = -\int_{-M}^M h(x, \epsilon) \phi(x, \epsilon) dx - \int_{-M}^M dx \int_{\epsilon}^{M} (u_t - u_{xx}) \phi \, dt = \]

\[= -\int_{-M}^M h(x, \epsilon) \phi(x, \epsilon) dx = -\int_{-\infty}^{\infty} h(x, \epsilon) \phi(x, \epsilon) dx \]

(recall that \(u_t - u_{xx} = 0 \)). Setting \(x = 2\sqrt{\epsilon}y \) we find

\[I(\epsilon) = -\int_{-\infty}^{\infty} \phi(x, \epsilon) \frac{x^2}{2\sqrt{\pi\epsilon}} \, dx = -\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-y^2} \phi(2\sqrt{\epsilon}y, \epsilon) \, dy \]

and since, \(\int_{-\infty}^{\infty} e^{-y^2} \, dy = \sqrt{\pi} \), we obtain

\[\lim_{\epsilon \to 0} I(\epsilon) = -\phi(0,0), \]

This finally yields the desired formula and the theorem is proved. ■

The conjugate operator

Rewrite our formula as

\[I(\phi) \equiv -\int_{\mathbb{R}^2} \left(\frac{\partial \phi}{\partial t} + \frac{\partial^2 \phi}{\partial x^2} \right) \psi \, dx = \phi(0,0) = \delta_0(\phi), \]

where \(\delta_0 \) as usually denotes the Dirac delta. Denote by \(L \) the heat operator \(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \). Then the operator \(L^* = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \) under the integral is called the conjugate to \(L \). This terminology is seen from the following observation. If both functions \(\phi \) and \(\psi \) are smooth with compact supports then

\[\langle \phi, L\psi \rangle \equiv \int_{\mathbb{R}^2} \phi L(\psi) \, dx = \int_{\mathbb{R}^2} \phi(\psi_t - \psi_{xx}) \, dx = \text{by integrating by parts} \]

\[= \int_{\mathbb{R}^2} -\phi_t \psi \, dx - \int_{\mathbb{R}^2} \phi_{xx} \psi \, dx = \langle L^* \phi, \psi \rangle \]

Hence we interpret \(L^* \) as the conjugate operator with respect to the scalar product. Moreover,

\[\langle \phi, L\psi \rangle = \langle L^* \phi, \psi \rangle = \int_{\mathbb{R}^2} L^*(\phi) \psi = \delta_0(\phi), \]

which is the characteristic property of a fundamental solution.
Definition. The function

\[\psi(x, t) = \begin{cases} \frac{1}{\pi} e^{-\frac{|x|^2}{4t}} & t > 0 \\ 0 & t \leq 0 \end{cases}\]

is called the fundamental solution of the heat equation \(u_t - u_{xx} = 0\).

The pure initial value problem

\[
u_t = \Delta u, \quad x \in \mathbb{R}^n, \quad t > 0
\]

\[
u(x, 0) = g(x), \quad x \in \mathbb{R}^n
\]

Theorem. If \(g\) is bounded and continuous in the whole \(\mathbb{R}^n\) then

\[
u(x, t) = \int_{\mathbb{R}^n} \psi(x - y, t) g(y) \, dy = \frac{1}{\pi} \int_{\mathbb{R}^n} e^{-\frac{|x - y|^2}{4t}} g(y) \, dy
\]

is the solution of the above pure initial value problem: \(\nu\) is a \(C^\infty\)-function in \(\mathbb{R}^n \times (0, +\infty)\) and satisfies \(\nu_t = \Delta \nu\) there, and \(\nu\) continuously extended in the closed half-space \(\mathbb{R}^n \times [0, +\infty)\) such that \(\nu(x, 0) = g(x)\).

Outline of the proof.

- The integral is well defined for any fixed \(x \in \mathbb{R}^n\) and \(t > 0\) since \(g\) is bounded and the exponential is absolutely integrable in \(\mathbb{R}^n\).
- The fact that \(\nu\) is a \(C^\infty\)-function in \(\mathbb{R}^n \times (0, +\infty)\) follows from the standard theorems on differentiating of (improper) integral with respect to parameter.
- Differentiating with respect to \(x\) and \(t\) one proves that \(\nu\) is a solution of the heat equation.
- Prove that \(\int_{\mathbb{R}^n} \psi(x - y, t) g(y) \, dy = 1\) for any \(t > 0\) (Hint: use the scaling argument and the Gauss formula \(\int_{-\infty}^{\infty} e^{-y^2} \, dy = \sqrt{\pi}\))
- Verify that for any \(\delta > 0\)

\[
\lim_{t \to +0} \int_{|x - y| > \delta} \psi(x - y, t) \, dy = 0
\]

uniformly for \(x \in \mathbb{R}^n\)
- Prove finally that \(\nu(x, t) \to g(x)\) as \(t \to 0^+\).