Lecture 12: The heat equation
The fundamental solution

There is no a radial symmetric solution of the heat equation as in the case with the Laplace
equation. Instead, we show that the function (the heat kernel)
1 =2
u(x, t) = e 4t, x € Rt > 0.
t2

which depends symmetrically on x is a solution of the heat equation. Indeed,
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Hence Au —u; = 0.

The significance of this function for the heat equation theory is seen from the following prop-
erty. We illustrate this by the two-dimensional case. First we modify slightly our solution and
define the new function 1: R? \ {0} - R by

1 _x? 0
e 4t t >
Y =192vrt
0 t<0

This function is called the fundamental solution of the heat equation in R?.

Theorem. The function 1 is locally integrable in R?, that is it is integrable on any bounded
open set. Moreover, for any function ¢(x,t) € C?(R?) having compact support the following
identity holds

a¢p 0%\ 1 =
f]RZ (E-l_ W) Zﬁe 4t dx = _¢(0,0).

Proof. Observe that ¢ is locally integrable. Indeed, we have

0y <

The latter square root function is integrable in any squares (why?)

Q={lx| <M, |t| <M}, M>0
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Hence 1 is locally integrable in R2.

Let ¢ (x,t) be any twice differentiable function with compact support in R?. We chose Msuch
that the support of ¢ is contained in the strip |x| < M. We know that

is a solution of the heat equation for t > 0. Consider the following integral
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where Q. = {|x| < M, t > €}. We find the last integral I, by splitting it into two parts:

M M
I = f dtf Dyre U dx
€ -M

and

M M
12 = f dtf ¢tudx.
€ -M

By integrating the inner integral in I; by parts two times (recall that ¢(£M,t) = ¢p(x, £M) =
0, hence the boundary values are equal to zero) we obtain

M M M M
j u(pxxdx:j ud(.bx:(pxu;zyM_f Uy ¢xdx=f Uyy ¢ dx
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Thus
M M
I; =j dtf Uy P dx
€ -M
Similarly,
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= —f_l::u(x, €)p(x, €)dx —f dx LMut ¢ dt
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In summary,

M M M
(e)=L+1,= —J h(x,€)p(x, €)dx — f dx f (U — Uy )P dt =
-M -M €

M 0
—f h(x,e)p(x, €)dx = —f h(x,e)p(x,€)dx
-M

—00
(recall that u; — = 0). Setting x = 2v/ey we find
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andsince, [__e ™ dy = V1, we obtain

I1(e) = —

lim I(e) = —$(0,0),

This finally yields the desired formula and the theorem is proved. =

The conjugate operator

Rewrite our formula as

== | (S2+55)0 ax= 900 = 5,9)

where §; as usually denotes the Dirac delta. Denote by L the heat operator % - a_ . Then the

2
operator L* = —% - aa? under the integral is called the conjugate to L. This terminology is

seen from the following observation. If both functions ¢ and 1 are smooth with compact
supports then

(p,LY) = fR2¢L(¢)dx = fquS(l/Jt — P )dx = by integrating by parts

—pepdr= | pupdr= (o)
R
Hence we interpret L* as the conjugate operator with respect to the scalar product. Moreover,
B0 = W) = [ L@ =5,(9)
R

which is the characteristic property of a fundamental solution.



Definition. The function

1 |x|?

e 4 t>0
0 t<0

is called the fundamental solution of the heat equation u; — u,, = 0.

The pure initial value problem

u; = Au, x€R® t>0

u(x,0) =gkx), xR

Theorem. If g is bounded and continuous in the whole R™ then
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is the solution of the above pure initial value problem: u is a C*-function in R"™ X (0, +) and
satisfies u; = Au there, and u continuously extended in the closed half-space R™ X [0, +0) such
that u(x,0) = g(x).

Outline of the proof.

The integral is well defined for any fixed x € R™ and t > 0 since g is bounded and the
exponential is absolutely integrable in R".

The fact that u is a C*-function in R™ X (0, +) follows from the standard theorems
on differentiating of (improper) integral with respect to parameter.

Differentiating with respect to x and t one proves that u is a solution of the heat equa-
tion.

Prove that fanp(x —y,t)g(y) dy =1 for any t > 0 (Hint: use the scaling argument

and the Gauss formula fjooo e’ dy = Vn)

Verify that forany § > 0
lim Yx—y,t)dy=0
t-+0 lx—y|>6

uniformly for x € R"

Prove finally that u(x,t) - g(x)ast - 0 +.



