Partiella differentialekvationer: Exercise problems (2009-02-10)

Vladimir Tkachev

Problem 1. Find a first-order differential equation having the following solutions:

a) u = xy + f(x - y)b) u = x + y + f(xy)c) $u = ax^{2} + xy + ay^{2}$

Here f is an arbitrary function and a is an arbitrary constant.

Problem 2. Find the general solution of the following homogeneous equations and draw the characteristic lines:

a)
$$u_x + yu_y = 0$$
,

b) $xu'_x + yu'_y + zu'_z = 0$, u = u(x, y, z)

Problem 3. Find the general solution of the following equations:

a) $yu_x - xu_y = 1$, b) $x^2u_x + y^2u_y = (x + y)u$.

Problem 4. Solve the following Cauchy problems by method of characteristics:

a) $yu_x + xu_y = 0$, $u(0, y) = y^2$ b) $3u_x + 2u_y = 0$, $u(x, 0) = \sin x$ c) $xu_x + yu_y = u + 1$, $u(x, x^2) = x^2$

Problem 5. Solve the following Cauchy problems by method of Lagrange:

- a) $u_x + uu_y = y$, u(0, y) = 1,
- b) $u_x + (x + y)u_y = 1$, u(x, -x) = 0.

Problem 6. Solve the Cauchy problem

$$(1 + x^2)u'_x - 2xy u'_y = 0, \quad u(x, x + x^3) = h(x)$$

where h(x) is some function.

Problem 7. Solve the initial-value problems for non-linear equations

a) $xu'_{x} + yu'_{y} + u'_{x}u'_{y} = u$, $u(x, 1) = x^{2}$ b) $u_{x} = u^{2}_{y}$, $u(0, y) = \frac{y^{2}}{2}$,

by both characteristic method and the method of envelopes (try first affine solutions).

Problem 8. Find the solution to the Cauchy problem: $xu'_x^2 + yu'_y = 0$, u(x, 1) = -x.

Problem 9. Prove that the only solutions in all \mathbb{R}^2 to the equation

$$u^3 u'_x + u'_y = 0$$

are the constants. (*Hint*: find the characteristic lines and discuss when they form a non-intersecting family)

Problem 10. Prove that the initial-value problem

$$xu_x + yu_y = u^3, \qquad u(x,0) = x,$$

has no solution. (*Hint*: differentiate the initial condition).