Partiella differentialekvationer: Solutions to 2009-03-10

Problem 1. Solve the boundary value problem for the Laplace equation in a square

$$
\begin{array}{cc}
u_{x x}^{\prime \prime}+u_{y y}^{\prime \prime}=0, & 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
u(0, y)=u(x, 0)=0, & u(1, y)=2 y, \quad u(x, 1)=3 \sin \pi x+2 x .
\end{array}
$$

Solution. First we reduce the problem to a homogeneous one. Notice that $2 x y$ is a harmonic function and then $u_{0}=u-2 x y$ is also harmonic. The boundary conditions for u_{0} are found as

$$
\begin{gathered}
u_{0}(0, y)=u(0, y)=0, \\
u_{0}(x, 0)=u(x, 0)=0, \\
u_{0}(1, y)=u(1, y)-2 y=0, \\
u_{0}(x, 1)=u(x, 1)-2 x=3 \sin \pi x .
\end{gathered}
$$

Now we can apply the method of separation of variables to u_{0} : we try find the solution in the form

$$
u_{0}(x, y)=\sum_{n=1}^{\infty} A_{n} v_{n}(x) w_{n}(y)
$$

where v_{n} and w_{n} the "elementary solutions", that is

$$
\Delta(v(x) w(y))=0
$$

The latter implies $v^{\prime \prime}(y) w(y)+v(x) w^{\prime \prime}(y)=0$, and consequently $\frac{v \prime \prime(x)}{v(x)}=-\frac{w^{\prime \prime}(y)}{w(y)}=C$, where C is some constant. Applying our boundary conditions $v(0)=v(1)=0$ we obtain that v must be a trigonometric function, moreover a sinus function:

$$
v_{n}(x)=\sin \pi n x, \quad n=1,2,3, \ldots
$$

This function corresponds to $C_{n}=-(\pi n)^{2}$. We have then for the second component

$$
w^{\prime \prime}-(\pi n)^{2} w=0
$$

that is the solution is found by means of the hyperbolic functions:

$$
w_{n}(y)=A_{n} \cosh \pi n y+B_{n} \sinh \pi n y .
$$

Then the boundary condition $w(0)=0$ implies $A_{n}=0$. In summary, we have

$$
u_{0}(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \pi n x \sinh \pi n y .
$$

It remains only to find the coefficients. Notice that

$$
u_{0}(x, 1)=3 \sin \pi x=\sum_{n=1}^{\infty}\left(A_{n} \sinh \pi n\right) \sin \pi n x
$$

hence $A_{n} \sinh \pi n=3$ for $n=1$ and $A_{n}=0$ otherwise. This gives

$$
u_{0}(x, y)=\frac{3}{\sinh \pi} \sin \pi x \sinh \pi y
$$

and finally

$$
u=u_{0}+2 x y=2 x y+3 \sin \pi x \frac{\sinh \pi y}{\sinh \pi}
$$

Problem 2. Show that $\frac{1}{|x|}$ is locally integrable in $\mathbb{R}^{3}\left(|x|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}\right)$ and find

$$
\lim _{\epsilon \rightarrow+0} \int_{|x|>\epsilon} \frac{\Delta \phi(x)}{|x|} d x_{1} d x_{2} d x_{3}
$$

for any twice-differentiable function ϕ with compact support.
Solution. Because $f \equiv \frac{1}{|x|}$ is continuous everywhere in the punctured space $\mathbb{R}^{3} \backslash\{0\}$ then it is locally integrable there. It remains only to show that f is integrable in any ball

$$
B_{R}=\{x:|x|<R\} .
$$

This is equivalent to the existence of absolute convergence of the integral

$$
I_{\epsilon}=\int_{R>|x|>\epsilon} \frac{1}{|x|} d x_{1} d x_{2} d x_{3}
$$

We calculate this by the spherical Fubini theorem:

$$
I_{\epsilon}=\int_{\epsilon}^{R} d r \int_{S_{r}} \frac{d S}{|x|}=\int_{\epsilon}^{R} d r \int_{S_{r}} \frac{d S}{r}=\int_{\epsilon}^{R} \frac{d r}{r} \operatorname{Area}\left(S_{r}\right)=4 \pi \int_{\epsilon}^{R} r d r=2 \pi\left(R^{2}-\epsilon^{2}\right)
$$

(S_{r} is the sphere of radius r and with center at the origin). We see that I_{ϵ} converges as $\epsilon \rightarrow 0$, hence we have proved that $f=\frac{1}{|x|}$ is locally integrable.

In order to find the limit we apply the $2^{\text {nd }}$ Green identity

$$
\int_{\Omega}(v \Delta u-u \Delta v) d x=\int_{\partial \Omega} v \frac{\partial u}{\partial v}-u \frac{\partial v}{\partial v} d S
$$

which is valid for any functions u, v continuous in $\bar{\Omega}$ and twice differentiable in the interior Ω. We take $u=\phi$ and $v=\frac{1}{|x|}$. We notice also that $f=\frac{1}{|x|}$ is harmonic. Indeed,

$$
\begin{gathered}
\nabla f=\nabla \frac{1}{r}=-\frac{1}{r^{2}} \nabla r=-\frac{1}{r^{2}} \cdot \frac{x}{r} \\
\Delta \frac{1}{r}=-\operatorname{div}\left(\frac{1}{r^{2}} \cdot \frac{x}{r}\right)=-\frac{1}{r^{3}} \operatorname{div} x+\left\langle x, \frac{3 x}{r^{5}}\right\rangle=-\frac{3}{r^{3}}+\frac{3}{r^{3}}=0 .
\end{gathered}
$$

Since ϕ has compact support, it vanishes outside a large ball, say in B_{R}. Then the Green identity for $\Omega=B_{R} \backslash B_{\epsilon}$ reads as

$$
\int_{\Omega} \Delta \phi(x) \frac{d x}{|x|}=\int_{\partial \Omega} \frac{\partial \phi}{\partial v} \cdot \frac{d S}{r}-\int_{\partial \Omega} \phi(x) \partial_{v}\left(\frac{1}{r}\right) d S=-\frac{1}{\epsilon} \int_{|x|=\epsilon} \frac{\partial \phi}{\partial v} d S-\frac{1}{\epsilon^{2}} \int_{|x|=\epsilon} \phi d S
$$

Here we used that $\phi(R)=\partial_{v} \phi(R)=0$ and $\partial_{v}\left(\frac{1}{r}\right)=-\frac{1}{r^{2}}$. We have for the integrals: the first integral converges to zero because $\frac{\partial \phi}{\partial \nu}$ is bounded in the unit ball (say by constant M) and the surface integral $\int_{|x|=\epsilon} \frac{\partial \phi}{\partial v} d S$ then can be estimated as

$$
\left|\frac{1}{\epsilon} \int_{|x|=\epsilon} \frac{\partial \phi}{\partial v} d S\right| \leq M \cdot \frac{4 \pi \epsilon^{2}}{\epsilon} \rightarrow 0
$$

For the second integral: for any small δ we chose ϵ such that $|\phi(x)-\phi(0)|<\delta$ if $|x|<\epsilon$ (this is possible since ϕ is continuous at the origin). Then

$$
\left|\frac{1}{\epsilon^{2}} \int_{|x|=\epsilon} \phi(x) d S-4 \pi \phi(0)\right|=\left|\frac{1}{\epsilon^{2}} \int_{|x|=\epsilon}(\phi(x)-\phi(0)) d S\right| \leq 4 \pi \delta .
$$

This shows that $\frac{1}{\epsilon^{2}} \int_{|x|=\epsilon} \phi(x) d S \rightarrow 4 \pi \phi(0)$ as $\epsilon \rightarrow 0$.
Thus we have

$$
\lim _{\epsilon \rightarrow+0} \int_{|x|>\epsilon} \frac{\Delta \phi(x)}{|x|} d x_{1} d x_{2} d x_{3}=-4 \pi \phi(0)
$$

Problem 3. Find the radial symmetric continuous solution of the Poisson equation

$$
\Delta u=1, \quad x \in \mathbb{R}^{3},
$$

satisfying $u(1,2,1)=1$.
Solution. Denote $u(x)=f(r)$, where $r=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}$. Then

$$
\begin{gathered}
\nabla f(r)=f^{\prime}(r) \nabla r=f^{\prime} \cdot \frac{x}{r} \\
\Delta f=\operatorname{div}\left(\frac{f^{\prime}(r)}{r} x\right)=\frac{3 f^{\prime}(r)}{r}+\left(\frac{f^{\prime}(r)}{r}\right)^{\prime} r=f^{\prime \prime}+\frac{2}{r} f^{\prime} .
\end{gathered}
$$

We arrive at the equation

$$
f^{\prime \prime}+\frac{2}{r} f^{\prime}=1
$$

and the Cauchy condition must be determined now by $u(1,2,1)=1$. We have

$$
r(1,2,1)=\sqrt{1+4+1}=\sqrt{6}
$$

hence

$$
u(1,2,1)=f(\sqrt{6})=1
$$

Solve the above differential equation by substitution $y=f^{\prime}$:

$$
y^{\prime}+\frac{2}{r} y=1, \quad y=\frac{r}{3}+\frac{C_{1}}{r^{2}} \equiv f^{\prime}, \quad f=\frac{r^{2}}{6}-\frac{C_{1}}{r}+C_{2}
$$

Since the solution must be continuous, it follows that $C_{1}=0$. Moreover, by the Cauchy data,

$$
f(\sqrt{6})=\frac{6}{6}+C_{2}=1, \quad C_{2}=0
$$

We find finally

$$
u=\frac{r^{2}}{6}=\frac{1}{6}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) .
$$

Problem 4. Find all solutions of the heat equation

$$
u_{x x}-u_{t}=0
$$

which have the form $u=t^{-\frac{1}{2}} f\left(t^{\alpha} x^{2}\right)$, where f is a function and α is a real number to be found. (Hint: reduce to a second order ODE with respect to $\xi=t^{\alpha} x^{2}$ and find the possible values of α.)

Solution. Denote $\xi=t^{\alpha} x^{2}$ and find the derivatives:

$$
\begin{gathered}
u_{t}=-\frac{1}{2} t^{-\frac{3}{2}} f(\xi)+\alpha t^{\alpha-\frac{3}{2}} x^{2} f^{\prime}(\xi)=t^{-\frac{3}{2}}\left(-\frac{1}{2} f(\xi)+\alpha \xi f^{\prime}(\xi)\right) \\
u_{x}=2 x t^{\alpha-\frac{1}{2}} f^{\prime}(\xi) \\
u_{x x}=4 x^{2} t^{2 \alpha-\frac{1}{2}} f^{\prime \prime}(\xi)+2 t^{\alpha-\frac{1}{2}} f^{\prime}(\xi)
\end{gathered}
$$

Substitution into $u_{x x}-u_{t}=0$ then yields

$$
4 \xi t^{\alpha+1} f^{\prime \prime}(\xi)+2 t^{\alpha+1} f^{\prime}(\xi)=-\frac{1}{2} f(\xi)+\alpha \xi f^{\prime}(\xi)
$$

hence

$$
t^{\alpha+1}=\frac{-\frac{1}{2} f(\xi)+\alpha \xi f^{\prime}(\xi)}{4 \xi f^{\prime \prime}(\xi)+2 f^{\prime}(\xi)}
$$

The right hand side of the latter equation depends on $\xi=x^{2} t^{\alpha}$ which is independent variable with respect to t, hence $\alpha+1=0$. We have $\alpha=-1$, therefore in summary,

$$
8 \xi f^{\prime \prime}(\xi)+4 f^{\prime}(\xi)=-\left(f(\xi)+2 \xi f^{\prime}(\xi)\right)
$$

Dividing both sides by $\xi^{\frac{1}{2}}$ we combine the terms by the Lebnitz product formula

$$
\begin{gathered}
8 \xi^{1 / 2} f^{\prime \prime}(\xi)+4 \xi^{-1 / 2} f^{\prime}(\xi)=8\left(\xi^{\frac{1}{2}} f^{\prime}(\xi)\right)^{\prime} \\
\xi^{-1 / 2} f(\xi)+2 \xi^{1 / 2} f^{\prime}(\xi)=2\left(\xi^{\frac{1}{2}} f(\xi)\right)^{\prime}
\end{gathered}
$$

We have

$$
8\left(\xi^{\frac{1}{2}} f^{\prime}(\xi)\right)^{\prime}=-2\left(\xi^{\frac{1}{2}} f(\xi)\right)^{\prime}
$$

and after integration

$$
4 f^{\prime}(\xi)+f(\xi)=C_{1} \xi^{-\frac{1}{2}}
$$

The solution of the homogeneous equation is

$$
f_{0}=C_{2} e^{-\frac{\xi}{4}}
$$

and the solution of the nonhomogeneous is found by variation of constants. We find finally the required solution in terms of the Gauss error integral

$$
f=C_{2} e^{-\frac{\xi}{4}}+C_{1} e^{-\frac{\xi}{4}} \int^{\xi} e^{\frac{\xi}{4} \xi^{-\frac{1}{2}}} d \xi=C_{2} e^{-\frac{\xi}{4}}+C_{3} e^{-\frac{\xi}{4}} \int^{\sqrt{\xi}} e^{\frac{s^{2}}{4}} d s
$$

It remains only to substitute $\xi=\frac{x^{2}}{t}$.

Problem 5. Solve the pure initial value problem for the heat equation

$$
u_{x x}+u_{y y}=u_{t}, \quad u(x, y, 0)=e^{-x^{2}-y^{2}} .
$$

Find the maximal temperature at time $t=2$.
Solution. We have the general representation

$$
u(x, t)=\frac{1}{(4 \pi t)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} e^{-\frac{|x-\xi|^{2}}{4 t}} g(\xi) d \xi
$$

In our case, $n=2, x=\left(x_{1}, x_{2}\right), \xi=\left(\xi_{1}, \xi_{2}\right)$ and $g\left(x_{1}, x_{2}\right)=e^{-x_{1}^{2}-x_{2}^{2}}$. Thus

$$
u(x, t)=\frac{1}{4 \pi t} \int_{\mathbb{R}^{2}} e^{-\frac{|x-\xi|^{2}}{4 t}} e^{-\xi_{1}^{2}-\xi_{2}^{2}} d \xi_{1} d \xi_{2}
$$

We have

$$
|x-\xi|^{2}=|x|^{2}-2\langle x, \xi\rangle+|\xi|^{2},
$$

and for the integrand:

$$
e^{-\frac{|x-\xi|^{2}}{4 t}} e^{-\xi_{1}^{2}-\xi_{2}^{2}}=\exp \left(-\frac{|x|^{2}-2\langle x, \xi\rangle+|\xi|^{2}}{4 t}-|\xi|^{2}\right) .
$$

Simplify, by completing the square:

$$
\begin{array}{r}
\frac{|x|^{2}-2\langle x, \xi\rangle+|\xi|^{2}}{4 t}+|\xi|^{2}=\frac{|x|^{2}}{4 t}+|\xi|^{2}\left(1+\frac{1}{4 t}\right)-\frac{2\langle x, \xi\rangle}{4 t} \\
=\frac{|x|^{2}}{4 t}+\left|\xi \sqrt{1+\frac{1}{4 t}}-\frac{x}{4 t \sqrt{1+\frac{1}{4 t}}}\right|^{2}-\left|\frac{x}{4 t \sqrt{1+\frac{1}{4 t}}}\right|^{2}=
\end{array}
$$

$$
=\frac{|x|^{2}}{4 t+1}+|\xi a-b|^{2}
$$

where $a=\sqrt{1+\frac{1}{4 t}}$ and $b=\frac{x}{4 t \sqrt{1+\frac{1}{4 t}}}$. This gives

$$
u(x, t)=\frac{1}{4 \pi t} e^{-\frac{|x|^{2}}{4 t+1}} \cdot \int_{\mathbb{R}^{2}} e^{-|\xi a-b|^{2}} d \xi_{1} d \xi_{2}=
$$

(change the variables $\eta=\xi a-b$, the determinant of the Jacobi matrix is a^{2})

$$
\begin{gathered}
=\frac{1}{4 \pi t a^{2}} e^{-\frac{|x|^{2}}{4 t+1}} \cdot \int_{\mathbb{R}^{2}} e^{-|\eta|^{2}} d \eta_{1} d \eta_{2}=\frac{1}{4 \pi t a^{2}} e^{-\frac{|x|^{2}}{4 t+1}} \cdot(\sqrt{\pi})^{2} \\
=\frac{1}{4 t\left(1+\frac{1}{4 t}\right)} e^{-\frac{|x|^{2}}{4 t+1}}=\frac{1}{4 t+1} e^{-\frac{|x|^{2}}{4 t+1} .}
\end{gathered}
$$

This is the required solution.
Now the maximal temperature for $t=2$ is found by

$$
u(x, 2)=\max _{\forall x}\left(\frac{1}{9} e^{-\frac{|x|^{2}}{9}}\right)=\frac{1}{9} .
$$

