Partiella differentialekvationer: Solutions to 2009-03-10

Problem 1. Solve the boundary value problem for the Laplace equation in a square

Uy +uyy, =0, 0<x<1 0<y<l1,
u(0,y) =ulx,0) =0, u(lLy) =2y, u(x1)=3sinmx + 2x.

Solution. First we reduce the problem to a homogeneous one. Notice that 2xy is a harmonic
function and then u, = u — 2xy is also harmonic. The boundary conditions for u, are found as

uo(0,y) = u(0,y) = 0,
Ug(x,0) = u(x,0) =0,
uy(Ly) =u(l,y) -2y =0,
uy(x,1) = u(x,1) — 2x = 3 sinmx.

Now we can apply the method of separation of variables to u,: we try find the solution in the
form

Up(6,3) = ) At (W)
n=1

where v,, and w,,the “elementary solutions”, that is

A(v(x)w(y)) = 0.

The latter implies v"' (y)w(y) + v(x)w" (y) = 0, and consequently v;'(:;) = — M;V(S;) = (C, where C

is some constant. Applying our boundary conditions v(0) = v(1) = 0 we obtain that v must be a
trigonometric function, moreover a sinus function:

v, (x) = sinmnx, n=123,..
This function corresponds to C,, = —(7n)?. We have then for the second component
w' — (mn)*w = 0,

that is the solution is found by means of the hyperbolic functions:

wy(y) = A, coshny + B, sinh tny.
Then the boundary condition w(0) = 0 implies 4,, = 0. In summary, we have

o0
uo(x,y) = z A,, sintnx sinh tny.
n=1

It remains only to find the coefficients. Notice that

0

uy(x,1) = 3sinmx = Z (A, sinh n) sin Tnx,

n=1



hence 4, sinhnmn = 3 forn = 1 and 4,, = 0 otherwise. This gives

uy(x,y) = sinx sinh 1y,

sinhm
and finally

sinh wy

= 2xy =2 3si .
U =uy+ 2xy = 2xy + 3sinnx P

Problem 2. Show that ﬁ is locally integrable in R3 (|x| = /x2 + x3 + xZ) and find

Ap(x
lim f () dxidx,dxs
|x|>€

€e—>+0 |x|

for any twice-differentiable function ¢ with compact support.

1
Il
locally integrable there. It remains only to show that f is integrable in any ball

Solution. Because f = — is continuous everywhere in the punctured space R3 \ {0} then itis

Bg = {x:|x] < R}.

This is equivalent to the existence of absolute convergence of the integral

1
16 = f —_— dxldxde3.
R>|x|>€ le

We calculate this by the spherical Fubini theorem:
R ds R ds Rdr R
I =f drj —=f drj —=J — Area(S,) = 4nf rdr = 2n(R? — €2).
€ Srlxl € Sr r € r €

(S; is the sphere of radius r and with center at the origin). We see that I, converges as € — 0,
1

hence we have proved that f = ™

is locally integrable.

In order to find the limit we apply the 2nd Green identity
f (vAu—uAv)dx=f v——u—dS§
Q

which is valid for any functions u, v continuous in Q and twice differentiable in the interior Q.
1
Wetakeu = ¢pandv =—

o We notice also that f = L is harmonic. Indeed,

x|

_ 1_ 1 _ 1 x
Vf—V;——r—ZVr——T—Z'?
1 ) 1 x 1 3x 3 3
A;=—d1v(T—z-;>=—r—3dlvx+(x,r—5)=—r—3+r—3=0.

Since ¢ has compact support, it vanishes outside a large ball, say in Bg. Then the Green identity
for Q = By \ B, reads as



dx dop dS 1 1 ¢ 1
== === swa(-) d5=——f Las——| ¢ads
|x| a0 OV T g r € Jixj=c OV €

[x]=€

fﬂ Ap(x)

Here we used that ¢(R) = d,¢(R) = 0 and 9, (%) = — riz We have for the integrals: the first
¢

integral converges to zero because ™

is bounded in the unit ball (say by constant M) and the

. a .
surface integral f|x|=ea_(f dS then can be estimated as

1 fGlo) 4me?
—f — dS|< M- - 0.
€ Jix|=e OV €

For the second integral: for any small § we chose € such that |¢p(x) — ¢(0)| < § if |x| < € (this is
possible since ¢ is continuous at the origin). Then

1 1
;Jm:e(ﬁ(x) ds — 4n¢(0)‘ = E_2f|x|=e(¢(x) — ¢(0)) dS| < 4nb.

This shows that = |

€2 J|x|=€

¢(x) dS - 4np(0) ase = 0.

Thus we have

lim f A0() dx;dx,dxs = —4ng(0).
|x|>€

€—>+0 |x|

Problem 3. Find the radial symmetric continuous solution of the Poisson equation
Au =1, x € R3,
satisfying u(1,2,1) = 1.

Solution. Denote u(x) = f(r), where r = \/x2 + x3 + x%. Then

VE(r) = f1()Vr = £ 5,

r

(DN 3 (N, 2,
Af-le( x)— " +< - )r—f +;f.

r

We arrive at the equation
Fredp=n
r

and the Cauchy condition must be determined now by u(1,2,1) = 1. We have

r(1,21) =V1+4+1=16,
hence

u(1,21) = f(vV6) = 1.

Solve the above differential equation by substitution y = f":

C: 2 C

2
"+ —yv =1 =4 —==f' = — - .
y+oy=L y=z+3 ,  f + (;



Since the solution must be continuous, it follows that ¢; = 0. Moreover, by the Cauchy data,
6
f(Ve) =c+G=1 ;=0
We find finally

r 1
u=g=g(xf+x§+x§).

Problem 4. Find all solutions of the heat equation

Upy — U =0

1
which have the form u = t "2 (t*x?), where f is a function and « is a real number to be found.
(Hint: reduce to a second order ODE with respect to & = t*x? and find the possible values of a.)

Solution. Denote ¢ = t*x? and find the derivatives:

1 3 a3 3001 ,
U= —5 2 E) +at I () = ¢ 2<—§f(€)+a€f (€)>,
1, = 20t°72f1(6),

Uy = 4226221 (E) + 20 (8.

Substitution into u,, — u; = 0 then yields

1
AT + 2671 = — o f () + aff'(S),

hence

@+ atf©
R +2f1())

The right hand side of the latter equation depends on & = x?t* which is independent variable
with respecttot ,hencea + 1 = 0. We have @ = —1, therefore in summary,

8Ef" () +4f'() = —(f(O) + 25f'(D)

Dividing both sides by E% we combine the terms by the Lebnitz product formula
BEVF(6) + 46 2f/(§) = 8 (f%f'(f)) ,

1 14

L) + 2821 ©) = 2§29

We have

!

8 (E%f’(f)) = —2(£2/(®),



and after integration

1
Af' )+ f(§) =& 2
The solution of the homogeneous equation is
g
fO = CZe 4,

and the solution of the nonhomogeneous is found by variation of constants. We find finally the
required solution in terms of the Gauss error integral

& e(fe E N e L]
f=Ce ¢+ Cie 4[ e+ 2dé = (e 4+ (Cze 4f e4 ds.

2
[t remains only to substitute { = xT

Problem 5. Solve the pure initial value problem for the heat equation
Uy T Uyy = Uy, u(x,y,0) = e~ x Y2,
Find the maximal temperature at time t = 2.

Solution. We have the general representation

1 _|x=¢1?
u(x,t) = Ef e 4t g(&)de.
(4mt)z “R™

In our case, n = 2, x = (xq,%,), &€ = (§,,&,) and g(xy, x,) = e *1*_ Thus

1 lx=¢|?
u(x,t) = 4_7'[t e_Te_ﬁ_fzz dé,dé,
R2

We have
lx — &12 = |x|* — 2(x, &) + |€]?,

and for the integrand:

|x—&|2 2 _ 2
e x4f e~§i7% = exp <— I~ 2<z;€) a1 |€|2>.

Simplify, by completing the square:

|x]? = 2{x, &) + | €[ |x|? 1\ 2(x¢)
4t + 181 =?+IE|2<1+E>_ 4t
2 2
- g P PO - |—= -
At

4t , 1 , 1
4t 1+E 4t 1+E



|x|? 5
=Teg1 T se—bl

[ 1 x o
wherea= [1+— andb = . This gives
at 4t /1+4it

L (T
u(x,t) = 4_nte 4t+1 - e dédé, =
]RZ

(change the variables n = éa — b, the determinant of the Jacobi matrix is a?)

1 || 1 |2
e at+1 - f e‘|’7|2dn1dnz = ~e 4T+ - (\/E)z
]RZ

- 4mtta’ 4mtta
1 _x]? 1 _x]?
= e %41 = Y] e at+1,
4t (1 + 4—t)

This is the required solution.

Now the maximal temperature for t = 2 is found by

. 1) 1
u(x, )—rrégx §e =3



