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Chapter 1

Periodic Functions, Series and Fourier
Series

“It’s Showtime!”
—Ben Richards

1.1 Preliminaries

The prerequisites for this course is basically single variable analysis, multivariate analysis and
linear algebra. Some complex analysis is helpful but I’ll make the course self-contained with
respect to that.

1.1.1 Complex-valued Functions

We will immediately start working with complex valued functions of a real variable (at this
point, we’ll consider complex valued functions of a complex variable later on). If you’ve taken
a course in complex analysis, everything will be familiar. If not, we do not need too much
complex analysis (although complex numbers will be everywhere). Let’s make a couple of
general definitions for the things that we will need.

Definition. We write that lim
z→z0

f(z) = A for some A ∈ C if for every ε > 0 there exists

a δ > 0 such that
|z − z0| < δ ⇒ |f(z)− f(z0)| < ε.

We call f continuous at z0 if lim
z→z0

f(z) = f(z0).

So the definition is almost identical with the real case, it’s just that | · | is now the complex

absolute value (meaning that |z| =
√

(Re z)2 + (Im z)2). Similarly to the real case, continuity
can equivalently be phrased in terms of sequences (Heine’s definition): for any sequence zn → z0

we have f(zn) → f(z0). This description is sometimes easier to deal with than Cauchy’s δ-ε-
definition.

At this point, we will mainly consider functions u : R→ C. For functions of this type, we can
always write u(x) = α(x) + iβ(x), where α, β : R → R are real-valued functions (the real and
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1.2. Periodic Functions Chapter 1. Periodic Functions, Series and Fourier Series

imaginary part of u(x)). Operations like differentiation and integration works like expected.
We treat the real and imaginary part separately and then sum the results, i.e.,

u′(x) = α′(x) + iβ′(x) and

ˆ b

a

u(x) dx =

ˆ b

a

α(x) dx+ i

ˆ b

a

β(x) dx.

This simplifies matters. In the case when we need to consider functions of a complex variable,
things get a bit trickier, but that can wait until the second half of the course. This decomposition
into real- and imaginary parts of the function u(x) is sufficient for what we need right now.

1.2 Periodic Functions

A function u : R→ C is called periodic if there is some constant T > 0 such that

u(x+ T ) = u(x) for every x ∈ R.

Note that if u is T -periodic, then u is also 2T -periodic since

u(x+ 2T ) = u(x+ T + T ) = u(x+ T ) = u(x) for every x ∈ R.

And similarly, u is nT periodic for n = 1, 2, 3, . . .. We usually refer to the smallest possible
period T when referring to a function’s period. A constant function does not have a smallest
period (but is obviously periodic).

(i) The functions sin t and cos t are 2π-periodic functions.

(ii) The functions eint are
2π

n
-periodic functions.

These functions are usually known as harmonic oscillations.

Example

In this course, we will mainly be considering 2π-periodic functions. How would we handle a
function that is not periodic? Consider a function u : [−π, π] → C. This means that u is
undefined outside the interval [−π, π]. For example, the graph (for a real example) could look
something like below.

x

y

u undefined;
here be dragons!

u undefined;
here be dragons!

−6π −5π −4π −3π −2π 2π 3π 4π 5π 6π−π π

From a function u : [a, b] → C defined on an interval [a, b] (say [−π, π]), we can consider the
periodic extension of u that is defined for all x ∈ R such that u(x + T ) = u(x) for every x,
where T = b − a. For the function above, the periodic extension would look like the graph
below.

8



Chapter 1. Periodic Functions, Series and Fourier Series 1.3. Function Spaces

x

y

−5π −4π −3π −2π 2π 3π 4π 5π−π π

If u is an integrable periodic function with period T , note that

ˆ T

0

u(x) dx =

ˆ a+T

a

u(x) dx

for any a ∈ R. Therefore we can choose any integration domain of length T and to make

the notation more compact, we often write

ˆ
T

u(x) dx to indicate that we integrate over one

period of the function.

Integrating periodic functions

1.3 Function Spaces

Let’s start with defining two rather general spaces.

Definition. We define the space L1(a, b) to consist of those functions u : ]a, b[→ C for which

ˆ b

a

|u(x)| dx <∞.

In other words, we collect those functions that are absolutely integrable on [a, b].

L1(a, b)

Definition. We define the space L2(a, b) to consist of those functions u : ]a, b[→ C for which

ˆ b

a

|u(x)|2 dx <∞.

L2(a, b)

These definitions might look fairly innocuous, but there’s some stuff buried here. First and
foremost, we really should be using a different type of integral than the Riemann integral we’re
used to (the Lebesgue counterpart). But in the case where the function is Riemann integrable,
these two integrals coincide so we can live with this problem in this course. There’s more issues
hiding around the corner, and we’ll get to some of these next lecture. The way we will handle
this in this course is to restrict our attention to a subset of L2(a, b) where these problems are
nonexistent.
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1.3. Function Spaces Chapter 1. Periodic Functions, Series and Fourier Series

Definition. We call a function u on an interval [a, b] piecewise continuous if there are
a finite number of points such that u is continuous everywhere on [a, b] except for at these
points. Moreover, if c ∈]a, b[ is one of these points, the limits

lim
x→c−

u(x) and lim
x→c+

u(x)

exist. We denote the space of all piecewise continuous functions on an interval [a, b] by E[a, b],
or just E if the interval is clear from the context.

Piecewise continuous function

We will denote the left- and righthand limits at a point c by

u(c−) = lim
x→c−

u(x) and u(c+) = lim
x→c+

u(x),

respectively.
As an example, we could consider the function

f(x) =

{
x, −2 ≤ x < 1,

4− x, 1 ≤ x ≤ 3.

x

y

−2 −1 1 2 3

We might consider something more dramatic as well. The function below is in E[−2, 4] (it is
in fact even piecewise constant).

x

y

−2 −1 1 2 3 4

So you probably get the point. We can cover quite a large amount of function types by only
considering piecewise continuous functions. However, this thinking might be a bit disingenuous.
It should be noted that this class of functions is still extremely small compared to, say, L2(2, 4).
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Chapter 1. Periodic Functions, Series and Fourier Series 1.4. Series

1.3.1 Left- and Righthand Derivatives

For u ∈ E, we define the left- and righthand derivatives at a point x ∈]a, b[ by

D−u(x) = lim
h→0−

u(x+ h)− u(x−)

h
and D+u(x) = lim

h→0+

u(x+ h)− u(x+)

h

if the limit exist. For the endpoints, we only define D+u(a) and D−u(b).

Definition. The linear space E ′[a, b] consists of those u ∈ E[a, b] such that D−u(x) exists
for a < x ≤ b and that D+u(x) exists for a ≤ x < b.

The space E′[a, b]

Note the following.

(i) If u is continuous, then u ∈ E.

(ii) If u is differentiable, then u ∈ E ′.

(iii) On a compact interval, E ′ ⊂ E ⊂ L2 ⊂ L1 (that L2 ⊂ L1 follows from Cauchy-Schwarz).

Properties

1.4 Series

As we remember from TATA42, we define a numerical series S of a sequence a0, a1, a2, . . . by

S =
∞∑
k=0

ak = lim
n→∞

n∑
k=0

ak

whenever this limit exists (this is the definition of a convergent series). We have also studied
certain types of functional series:

S(x) =
∞∑
k=0

uk(x) = lim
n→∞

n∑
k=0

uk(x)

for those x where the limit exists. In particular, we’ve seen power series where uk(x) = ckx
k

and ck are real (or complex) constants. The sums

Sn(x) =
n∑
k=0

uk(x), n ∈ N,

are called the partial sums of the series S. Whenever Sn(x) has a limit as n→∞, this is the
value of S(x). We call the limit S(x) the pointwise limit of Sn(x) as n→∞. In other words,
the partial sums Sn(x) converges pointwise to S(x). There are other types of convergence as
we shall see later on.

11
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1.5 Fourier Series

Let u ∈ L1(−π, π) and define

ak =
1

π

ˆ π

−π
u(x) cos kx dx and bk =

1

π

ˆ π

−π
u(x) sin kx dx.

The series

S(x) =
a0

2
+
∞∑
k=1

ak cos kx+ bk sin kx

is called the real Fourier series of the function u. The real constants ak and bk (if u is real)
are called the Fourier coefficients of u.
We will write that

u(x) ∼ a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx) .

Why not equality? Well, there’s a couple of problems here.

(i) For a given x ∈ [−π, π], does S(x) exists? That is, does the series converge?

(ii) If S(x) does exists, is it true that S(x) = u(x)?

(iii) If we consider u ∈ L1(−π, π), what does even u(x) mean?

(iv) Suppose that S(x) does exist and that S(x) = u(x), in what way do we expect the
partial sums to converge?

So when we write that u(x) ∼ S(x) we mean that S(x) is the expression that we obtain from u
when calculating the Fourier series. We will show that most of the questions above will have
an answer with this meaning.

Suppose that u(x) = sgn(x) for x ∈ [−π, π], where sgn(x) = −1 when x < 0, sgn(0) = 0
and sgn(x) = 1 when x > 0. Find the Fourier series of u.

Example

Solution. We consider the periodic extension of u. The Fourier coefficients can be calculated
as follows:

a0 =
1

π

ˆ π

−π
u(x) cos(0 · x) dx =

1

π
(−1 + 1) = 0,

and for k ≥ 1,

ak =
1

π

ˆ π

−π
u(x) cos kx dx =

1

π

(ˆ 0

−π
− cos kx dx+

ˆ π

0

cos kx dx

)
=

1

π

([
−sin kx

k

]0

−π
+

[
sin kx

k

]π
0

)

=
1

π

(
−− sin(−kπ)

k
+

sin kπ

k

)
=

2 sin kπ

k
= 0,

12
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and finally for k ≥ 1

bk =
1

π

ˆ π

−π
u(x) sin kx dx =

1

π

(ˆ 0

−π
− sin kx dx+

ˆ π

0

sin kx dx

)
=

1

π

([
cos kx

k

]0

−π
+

[
− cos kx

k

]π
0

)

=
1

π

(
1

k
− cos kπ

k
+
− cos kπ

k
+

1

k

)
=

2− 2 cos kπ

kπ
=

2(1− (−1)k)

kπ
.

Hence

u(x) ∼ 2

π

∞∑
k=1

1− (−1)k

k
· sin kx.

Now, a reasonable question is: “does this series converge?” Since, if k is odd,∣∣∣∣1− (−1)k

k
· sin kx

∣∣∣∣ =
2

k
| sin kx|,

it is not absolutely convergent. The series passes the divergence test, but that only means we
cannot conclude that it is divergent. It might be tempting to think of Leibniz, but this series
is not alternating (we might find some values for x but not in general). So we don’t know if
the series converges or diverges for just about any value of x. Don’t worry, we’ll get to this.
In fact, this series is actually convergent to u(x) for every x, but we have no idea why at this
point. Summing the first n terms, we find the graphs below. This indicates that the sum indeed
converges to the desired function, but there’s some “squiggly” stuff going on around the jump
points. We’ll get back to that as well.

x

y
n = 1

n = 3

n = 5

n = 10

n = 100

n = 200

1 2 3

1

1

1.5.1 Complex Fourier series

So when examining the example in the previous section, we see that the same type of calculations
are repeated for cos and sin. Considering that we’ve seen this phenomenon previously in analysis
courses, might we consider a complex form instead and obtain both results at once? The answer
is yes.
Similarly to above, let u ∈ L1(−π, π) and define

ck =
1

2π

ˆ π

−π
u(x)e−ikx dx.

The series

u(x) ∼ S(x) =
∞∑

k=−∞

cke
ikx

13
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is called the complex Fourier series of u and ck are the complex Fourier coefficients

of u. In this case, we define the partial sums Sn(x) =
n∑

k=−n

uk(x) so that we sum symmetrically

around n = 0. Note that this gives a different type of convergence than if we were to have two
different limits.
So how does this connect to the real Fourier series? Well, if we recall Euler’s formulas, we have

eikx = cos kx+ i sin kx.

Thus we see that

c±k =
1

2π

ˆ π

−π
u(x)

(
cos(±kx)− i sin(±kx)

)
dx =

1

2
(ak ∓ ibk) ,

and therefore, for k > 0,

cke
ikx + c−ke

−ikx =
1

2
(ak − ibk) (cos kx+ i sin kx) +

1

2
(ak + ibk) (cos kx− i sin kx)

=
1

2
(2ak cos kx+ 2bk sin kx) = ak cos kx+ bk sin kx.

Hence the two types of partial sums (the real and the complex) are equal, so converges to the
same thing if convergent (which they are at the same time). The condition that u ∈ L1(−π, π)
is natural in the sense that this will ensure that the Fourier coefficients exist as absolutely
convergent integrals:

|ck| =
1

2π

∣∣∣∣ˆ π

−π
u(x)e−ikx dx

∣∣∣∣ ≤ 1

2π

ˆ π

−π
|u(x)|

∣∣e−ikx∣∣ dx =
1

2π

ˆ π

−π
|u(x)| dx.

When dealing with the complex Fourier coefficients, there are several different notations that
are quite common. We might use these at certain points:

ck = ûk = û[k], k ∈ Z.

So which representation is the best? That depends on the situation. The real series is clearly
real valued (if u is real valued), which might be nice to see when working with real functions.
However, the complex series is more compact and you can do more calculations at the same
time. So the choice is basically yours, but be aware that you need to be able to handle both
variants to pass the course. There’s also some slight differences in function spaces used, so be
careful which series you work with. In these notes, most things will be carried out using the
complex form, whereas the book does most things with the real form. So there. You can choose
yourself.

1.6 Frequency Domain?

Another thing that’s straightforward with the complex notation is that we can plot some graphs
that describe the “frequency content” of a periodic function. Consider the function

u(x) = 1 + 3 cos x− 2 cos 2x+ 6 cos 4x+ 4 cos 7x.

Using Euler’s formulas, we can rewrite this as

u(x) = 1 +
3

2
eix +

3

2
e−ix − ei2x − e−i2x + 3ei4x + 3e−i4x + 2ei7x + 2e−i7x.

14



Chapter 1. Periodic Functions, Series and Fourier Series 1.6. Frequency Domain?

This is the Fourier series for u(x), although this is not exactly clear at the moment since we
haven’t shown any results regarding the uniqueness. As an exercise, try to use this representa-
tion to calculate the Fourier coefficients. You’ll find that

c0 = 1, c±1 =
3

2
, c±2 = −1, c±4 = 3, and c±7 = 2.

All other ck = 0. What we usually do is draw the magnitude |ck| of the coefficients ck (remember
that they might be complex as well as negative). For this example, this would look like the
graph below.

k

Abs

−12−11−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

From this graph we see what frequencies are needed to represent a periodic function. This
type of plot will become more interesting when we consider the Fourier transform instead. If
we have used a real Fourier series, the magnitude is given by

√
a2 + b2 and we only plot for

nonnegative k (why?).

For something a little messier, let’s consider the following.

Let u(x) = cos
(x

2

)
, −π ≤ x ≤ π, and find the Fourier series of u. Draw a magnitude plot.

Example

Solution. We need the Fourier coefficients, so

c0 =
1

2π

ˆ π

−π
cos
(x

2

)
dx =

2

π

and for k 6= 0,

ck =
1

2π

ˆ π

−π
e−ikx cos

(x
2

)
dx =

1

4π

ˆ π

−π

(
e−ikx+ix/2 + e−ikx−ix/2

)
dx

=
1

4π

[
e−ikx+ix/2

i(−k + 1/2)
+

e−ikx−ix/2

i(−k − 1/2)

]π
−π

=
(−1)k

2π

(
1

−k + 1/2
− 1

−k − 1/2

)
=

(−1)k+1

2π

(
1

(−k + 1/2)(−k − 1/2)

)
=

4(−1)k+1

2π(4k2 − 1)
.

We note that ck =
4(−1)k+1

2π(4k2 − 1)
for all k ∈ Z, so u(x) ∼

∞∑
k=−∞

4(−1)k+1

2π(4k2 − 1)
eikx.
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k

Abs

−12−11−10−9−8−7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11 12

We note that ck 6= 0 for every k ∈ Z (they do tend to zero quite fast however), unlike the
previous example where only certain values of k where nonzero. If only a finite number of ck
are nonzero, this means that the function is a trigonometric polynomial that is periodic with
period 2π. While cos(x/2) is periodic, it is not periodic with period 2π. This is an important
distinction.

1.7 Even/Odd Functions

Recall that a function u is even if u(−x) = u(x) and odd if u(−x) = −u(x). The most common
examples being that u(x) = cosx is even and u(x) = sin x is odd. For functions that espouse
these additional symmetries, we can make some simplifications to the Fourier calculations.

Theorem.

(i) If u is even, then bk = 0 for k = 1, 2, 3, . . ..

(ii) If u is odd, then ak = 0 for k = 1, 2, 3, . . ..

Proof. If u is even, then the product u(x) sin kx is odd for k = 1, 2, 3, . . .. Hence

ˆ π

−π
u(x) sin kx dx = 0,

so bk = 0. Similarly, if u is odd, then u(x) cos kx is odd for k = 1, 2, 3, . . . which implies
that ak = 0.

Find the Fourier series for u(x) = x2, x ∈ [−π, π].

Example

Solution. First alternative: the real form. Since u is even, we know that bk = 0. This means
that we’ll obtain a pure cosine-series. With this in mind, we calculate

a0 =
1

π

ˆ π

−π
x2 dx =

2π2

3

16
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and

ak =
1

π

ˆ π

−π
x2 cos kx dx =

/
x2 cos kx even

/
=

2

π

ˆ π

0

x2 cos kx dx

= / I.B.P. / =
2

π

([
x2 sin kx

k
+

2x cos kx

k2

]π
0

− 2

k2

ˆ π

0

cos kx dx

)
=

2

π

(
2π cos(πk)

k2

)
=

4(−1)k

k2
.

Alternative two: the complex form. Ignoring for a moment that we know that u is even, we
could just do the calculation for the complex Fourier coefficients without using any additional
information. Indeed,

c0 =
1

2π

ˆ π

−π
x2 dx =

π2

3

and for k 6= 0:

ck =
1

2π

ˆ π

−π
x2e−ikx dx = / I.B.P. / =

1

2π

([
− 1

ik
x2e−ikx +

2x

k2
e−ikx

]π
−π
− 2

k2

ˆ π

−π
e−ikx dx

)
=

1

2π

(
4π(−1)k

k2

)
Due to the symmetry c−k = ck, we obtain the same pure cosine series as before.
So we have shown that

u(x) ∼ π2

3
+
∞∑
k=1

4(−1)k

k2
cos kx.

We note that the series is actually absolutely convergent, so we do know that it converges. Is it
equal to x2 for x ∈ [−π, π]? At this point, we do not know. Obviously there’s still some theory
that we’re missing. Drawing the graphs for the partial sums, we find that the Fourier series
seems to converge to x2 (periodically extended). Note that there seems to be nothing of that
squiggly behavior we saw when drawing the partial sums for sgn(x). Why not?

x

y

n = 1

n = 3

n = 5

n = 10

n = 50

1 2 3

10

1.7.1 Even/Odd Extensions

Suppose that we have a function u : [0, π]→ C. We define the even extension ue of u by

ue(x) =

{
u(x), 0 ≤ x ≤ π,

u(−x), −π ≤ x < 0,

17
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and the odd extension uo of u by

uo(x) =


u(x), 0 < x ≤ π,

0, x = 0,

−u(−x), −π ≤ x < 0,

So note that we only have a function defined on half the interval [−π, π] and that we extend
this to the other half. Since we now obtain an odd or even function (depending on choice), we
find that the Fourier series will contain only sine or cosine terms. We call this the sine series
or cosine series for a function u ∈ L2(0, π).

1.8 What if T 6= 2π?

As stated earlier, it’s not a problem to use functions with a different period than 2π. For this
purpose, if u is a T -periodic function, we define

Ω =
2π

T
.

The real Fourier series of u is then given by

u(x) ∼ a0

2
+
∞∑
k=1

ak cos kΩx+ bk sin kΩx,

where

ak =
2

T

ˆ T/2

−T/2
u(x) cos kΩx dx and bk =

2

T

ˆ T/2

−T/2
u(x) sin kΩx dx.

The complex series is given by

u(x) ∼
∞∑

k=−∞

cke
ikΩx, where ck =

1

T

ˆ T/2

−T/2
u(x)e−ikΩx dx.

Find the Fourier series of u(x) = |x|, −1 ≤ x ≤ 1.

Example

Solution. We consider the periodic extension of u with the period T = 2. Then Ω = 2π/2 = π
and for k 6= 0,

ck =
1

2

ˆ 1

−1

|x|e−ikπx dx =
1

2

ˆ 0

−1

−xe−ikπx dx+
1

2

ˆ 1

0

xe−ikπx dx

=
1

2

([
−xe−ikπx

−ikπ

]0

−1

+

ˆ 0

−1

e−ikπx

−ikπ
dx

)
+

1

2

([
xe−ikπx

−ikπ

]1

0

−
ˆ 1

0

e−ikπx

−ikπ
dx

)

=
1

2

(
eikπ

ikπ
+

[
e−ikπx

−k2π2

]0

−1

)
+

1

2

(
−e
−ikπ

ikπ
−
[
e−ikπx

−k2π2

]1

0

)

=
1

2

(
− 1

k2π2
+
eikπ

k2π2
+
e−ikπ

k2π2
− 1

k2π2

)
=

(−1)k − 1

k2π2
.
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For k = 0,

c0 =
1

2

ˆ 1

−1

|x| dx =

ˆ 1

0

x dx =
1

2
.

Hence

u(x) ∼ 1

2
+

∞∑
k=−∞
k 6=0

(−1)k − 1

k2π2
eikπx =

1

2
−
∞∑
k=0

4

(2k + 1)2π2
cos((2k + 1)πx),

where the last expression follows from Euler’s formulas and the fact that c−k = ck and c2k = 0
for k ∈ Z with k 6= 0.
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Chapter 2

Linear Algebra, Infinite Dimensional
Spaces and Functional Analysis

“You have no respect for logic. I have no respect for those who have no respect for logic.”
—Julius Benedict

2.1 Remember Linear algebra? Finite Dimensional Spaces

Let V be a linear space (sometimes we say vector space) over the complex (sometimes real)
numbers. We recall some definitions from linear algebra. Elements of a linear space can be
added and multiplied by constants and still belong to the linear space:

u, v ∈ V ⇒ αu+ βv ∈ V, α, β ∈ C (or R).

The operations addition and multiplication by constant behaves like we expect (associative,
distributive and commutative). Multiplication of vectors is not defined in general, but as we
shall see we can define different useful products in many cases.

Definition. Let u1, u2, . . . , un ∈ V . We call

u =
n∑
k=1

αkuk = α1u1 + α2u2 + · · ·+ αnun

a linear combination. If

n∑
k=1

αkuk = 0 ⇔ α1 = α2 = · · · = αn = 0,

we say that u1, u2, . . . , un are linearly independent. The linear span span{u1, u2, . . . , un}
of the vectors u1, u2, . . . , un is defined as the set of all linear combinations of these vectors
(which is a linear space).

Linear combination

You’ve seen plenty of linear spaces before. One such example is the euclidian space Rn consisting
of elements (x1, x2, . . . , xn), where xi ∈ R. Recall also that you’ve seen linear spaces that
consisted of polynomials. The fact that our definitions is general enough to cover many cases
will prove to be very fruitful.
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2.2. Normed Linear Spaces Chapter 2. Linear Algebra

Definition. A subset {v1, v2, . . . , vn} ⊂ V of linearly independent vectors is called a base
for V if V = span{v1, v2, . . . , vn} (meaning that every vector v ∈ V can be expressed uniquely
as a linear combination of the elements v1, v2, . . . , vn). The non-negative integer n is called
the dimension of V : dim(V ) = n.

Basis

In general, we do not wish to restrict ourselves to finite dimensions or vectors of complex
numbers.

2.1.1 Sequences

We denote a sequence u1, u2, u3, . . . (or u1, u2, . . . , un if it is a finite sequence) of elements of a
linear space V by (uk)

∞
k=1 ((uk)

n
k=1). If there’s no risk of misunderstanding, we might just say

“the sequence un.”

As an example, consider the sequence un = x +
1

n
in R. That means that u1 = x + 1,

u2 = x+ 1/2, u3 = x+ 1/3, and so on. We see that as n→∞, clearly un → x. In other words,
the sequence un converges to x. This feels natural in this setting, but we will generalize this to
have meaning for other linear spaces than R.

2.2 Normed Linear Spaces

To measure distances between elements in a linear space (or “lengths” of elements), we define
the abstract notion of a norm on a linear space (in the cases where this is allowed).

Definition. A normed linear space is a linear space V endowed with a norm ‖ · ‖ that
assigns a non-negative number to each element in V in a way such that

(i) ‖u‖ ≥ 0 for every u ∈ V ,

(ii) ‖αu‖ = |α|‖u‖ for u ∈ V and every constant α,

(iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for every u, v ∈ V .

Norm

We note that in linear algebra, we typically used the norm | · | on the euclidean space Rn

(or Cn). We will use different types of norms in this course since we will be dealing with more
complex spaces.

An element e in V with length 1, that is, ‖e‖ = 1, is called a unit vector.

(i) The space Rn with the norm ‖(x1, x2, . . . , xn)‖ =
√
x2

1 + x2
2 + · · ·+ x2

n.

(ii) The space Rn with the norm ‖x‖ = max{|x1|, |x2|, . . . , |xn|}.

Some examples of normed spaces
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The first example is obviously already something you’re familiar with. It is also an example of
something we will call an inner product space below. The second example is a bit different. In
some sense equivalent, but the norms yield different values for the same vector. Try to prove
that the second one satisfies all the requirements for a norm.

The space C[a, b] consisting of continuous functions on the closed interval [a, b] endowed with
the norm

‖f‖C[a,b] = max
a≤t≤b

|f(t)|, f ∈ C[a, b].

The space of continuous functions with sup-norm

The space l1 consisting of all sequences (x1, x2, x3, . . .) such that the norm

‖x‖l1 =
∞∑
k=1

|xk| <∞.

We might also consider the space lp for 1 ≤ p <∞ with the norm

‖x‖lp =

(
∞∑
k=1

|xk|p
)1/p

<∞.

Sequence spaces

The space L1(R) of all integrable (on R) functions with the norm

‖f‖L1(R) =

ˆ ∞
−∞
|f(x)| dx.

In other words, all functions that are absolutely integrable on R. Note here that there’s an
army of dogs buried here. Indeed, the integral is not in the sense we’re used to but rather in
the form of the Lebesgue integral. We will not get stuck at this point, but it might be good
to know.

The space of absolutely integrable functions

Exercise: Prove that the spaces above are normed linear spaces. Do you see any useful ways
to consider some “multiplication” of vectors?
We see that an underlying linear space (like Rn) might be endowed with different norms. This is
true in general, and changing norms usually changes the results (at least for infinite dimensional
spaces).

2.3 Convergence in Normed Spaces

Let u1, u2, . . . be a sequence in a normed space V . We say that un → u for some u ∈ V
if ‖un − u‖ → 0 as n → ∞. This is called strong convergence or convergence in norm.
Note that we assumed above that the element u belonged to V . This may not be the case for
every convergent sequence.
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Definition. We call a sequence (uk)
∞
k=1 in V a Cauchy sequence if for every ε > 0 there

exists an integer N so that

‖un − um‖ ≤ ε for n,m ≥ N.

Cauchy sequence

Definition. If every Cauchy sequence un in V converges to an element in V , say un → u ∈ V ,
we call V complete.

Complete space

Definition. If every convergent sequence un in V converges to an element u ∈ V , that is

un → u ⇒ u ∈ V,

we call V (sequentially) closed.

Closed space

Note that a complete space is closed but that the reverse is not necessarily true for general
spaces (some metric spaces for example).
For this course, we will mainly study the space E which consists of piecewise continuous func-
tions. This will ensure that some things are easy, but unfortunately the space E with the norms
and inner products we are interested in will not be complete nor closed. This will not be a big
problem for us, but it’s worth mentioning if we wish to do Fourier analysis in a more generalized
setting.
Analogously with real analysis, we can define continuous mappings on normed spaces.

Definition. Let V and W be normed spaces. A function u : V → W is said to be continuous
if for every ε > 0, there exists a δ > 0 such that

x, y ∈ V, ‖x− y‖V < δ ⇒ ‖u(x)− u(y)‖W < ε.

Continuity in normed spaces

2.3.1 Series in Normed Spaces

Let u1, u2, u3, . . . be a sequence in V . How do we interpret an expression of the form

S =
∞∑
k=1

uk, (2.1)

that is, what does an infinite sum of elements in V mean? We define the partial sums by

Sn =
n∑
k=1

uk, n = 1, 2, 3, . . .
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If Sn converges to some S ∈ V in norm, that is,

lim
n→∞

∥∥∥∥∥S −
n∑
k=1

uk

∥∥∥∥∥ = 0,

then we write that (2.1) is convergent. Notice that this does not mean that

∞∑
k=1

‖uk‖ <∞.

If this second series of real numbers is convergent, we call (2.1) absolutely convergent (com-
pare with what we did in TATA42). Note also that an absolutely convergent series is convergent
in the sense above (why?).

2.4 Inner Product Spaces

A norm is not enough to define a suitable geometry for our purposes, so we will usually work
with inner product spaces instead.

Definition. An inner product 〈 · , · 〉 on a vector space V is a complex valued (sometimes
real) function on V × V such that

(i) 〈u, v〉 = 〈v, u〉

(ii) 〈u+ v, w〉 = 〈u, w〉+ 〈v, w〉

(iii) 〈αu, v〉 = α 〈u, v〉

(iv) 〈u, u〉 ≥ 0

(v) 〈u, u〉 = 0 if and only if u = 0.

Inner product

Note that (i) and (ii) implies that 〈u, v + w〉 = 〈u, v〉 + 〈u, w〉 and that (i) and (iii) implies
that 〈u, αv〉 = α 〈u, v〉.
In an inner product space, we use ‖u‖ =

√
〈u, u〉 as the norm. Why is this a norm? We’ll get

to that.

Notice that if we’re given a linear space of functions, there’s an infinite number of different
inner products on this space that provides the same geometry. Suppose that 〈u, v〉 is an inner
product. Then α 〈u, v〉 is also an inner product for any α > 0.
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2.4. Inner Product Spaces Chapter 2. Linear Algebra

General sets

Linear spaces

Normed
spaces

Inner product spaces

Definition. The space Cn consisting of n-tuples (z1, z2, . . . , zn) with

〈z, w〉 =
n∑
k=1

zkwk, z, w ∈ Cn,

is an inner product space.

The inner product space Cn

Definition. The space l2 consisting of all sequences (x1, x2, x3, . . .) of complex numbers
such that the norm

‖x‖l2 =

(
∞∑
k=1

|xk|2
)1/2

<∞.

This is an inner product space if

〈x, y〉 =
∞∑
k=1

xkyk, x, y ∈ l2.

The inner product space l2
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Definition. The space L2(a, b) consists of all “square integrable” functions with the inner
product

〈f, g〉 =

ˆ b

a

f(t)g(t) dt.

Note that a = −∞ and/or b =∞ is allowed.

The inner product space L2(a, b)

Why not the same examples as for the normed spaces? The simple answer is that most of those
examples are not inner product spaces. The last two examples above are very important and the
fact that it’s the number 2 is not random and this is actually the only choice for when Lp(a, b),
which consists of functions for which

‖f‖Lp(a,b) =

(ˆ b

a

|f(t)|p dt
)1/p

<∞

are inner product spaces. Again, we also note that the integrals above are more general than
what we’ve seen earlier but if the function f is nice enough the value will coincide with the
(generalized) Riemann integral.

Definition. If u, v ∈ V and V is an inner product space, we say that u and v are orthogonal
if 〈u, v〉 = 0. We denote this by u ⊥ v.

Orthogonality

A sequence un is called pairwise orthogonal if 〈ui, uj〉 = 0 for every i 6= j. For sequences of
this type, we have the generalized Pythagorean theorem.

Theorem. If u1, u2, . . . , un are pairwise orthogonal, then

‖u1 + u2 + · · ·+ un‖2 = ‖u1‖2 + ‖u2‖2 + · · ·+ ‖un‖2.

Theorem. If u, v ∈ V and V is an inner product space, then | 〈u, v〉 | ≤ ‖u‖‖v‖.
The Cauchy-Schwarz inequality

Proof. Assume that v 6= 0 (the inequality is trivial if v = 0) and define λ = 〈u, v〉 /‖v‖2. Then

‖u− λv‖2 = 〈u− λv, u− λv〉 = ‖u‖2 − λ 〈u, v〉 − λ 〈v, u〉+ |λ|2‖v‖2

= ‖u‖2 − λ 〈u, v〉 − λ〈u, v〉+ |λ|2‖v‖2

= ‖u‖2 − | 〈u, v〉 |
2

‖v‖2
− | 〈u, v〉 |

2

‖v‖2
+
| 〈u, v〉 |2

‖v‖2
= ‖u‖2 − | 〈u, v〉 |

2

‖v‖2

so

0 ≤ ‖u− λv‖2 = ‖u‖2 − | 〈u, v〉 |
2

‖v‖2
⇔ | 〈u, v〉 |2 ≤ ‖u‖2‖v‖2,

which implies the inequality.
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2.5 Orthogonal Projection

Let e ∈ V with ‖e‖ = 1. For u ∈ V , we define the orthogonal projection v of u on e
by v = 〈u, e〉 e. This is reasonable since u− v ⊥ e:

〈u− v, e〉 = 〈u, e〉 − 〈v, e〉 = 〈u, e〉 − 〈u, e〉 〈e, e〉 = 0.

u− v

v

u

e

Note that

‖u‖2 = ‖u− v + v‖2

= ‖u− v‖2 + ‖v‖2

= ‖u− v‖2 + | 〈u, e〉 |2.

Definition. Let V be an inner product space. We call

(i) {e1, e2, . . . , en} ⊂ V ,

(ii) or {e1, e2, . . .} ⊂ V ,

an ON system in V if ei ⊥ ej for i 6= j and ‖ei‖ = 1 for all i.

ON system

We do not assume that V is finite dimensional and that n is the dimension, and we do not
assume that the ON system consists of finitely many elements.
If the ON system is finite, consider W = span{e1, e2, . . . , en} ⊂ V . We define the orthogonal
projection Pv of a vector v ∈ V onto the linear space W by

Pv =
n∑
k=1

〈v, ek〉 ek.

If v ∈ W , then clearly Pv = v. If v 6∈ W , then Pv is the vector that minimizes ‖v−Pv‖. Note
that this happens if v − Pv ⊥ W (meaning perpendicular to every vector in W ). We also note
that

‖v‖2 = ‖v − Pv‖2 +
n∑
k=1

| 〈v, ek〉 |2

These facts are well-known from linear algebra.
If the ON system is infinite, let

Pnv =
n∑
k=1

〈v, ek〉 ek, v ∈ V, n = 1, 2, 3, . . .

Each Pnv is the projection on a specific n-dimensional subspace of V (the order of the elements
in the ON system is fixed). Let us state the famous Bessel’s inequality.
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Theorem. Let V be an inner product space, let v ∈ V and let {e1, e2, . . .} be an ON system
in V . Then

∞∑
k=1

| 〈v, ek〉 |2 ≤ ‖v‖2.

Bessel’s inequality

Since ‖v‖ < ∞ for every v ∈ V , this inequality proves that the series in the left-hand side
converges. A direct consequence of this is the Riemann-Lebesgue lemma.

Theorem. Let V be an inner product space, let v ∈ V and let {e1, e2, . . .} be an ON system
in V . Then

lim
n→∞

〈v, en〉 = 0.

The Riemann-Lebesgue Lemma

2.5.1 The Infinite Dimensional Case

If dim(V ) = n and our ON system has n elements, then we know that we can always repre-

sent v ∈ V as v =
n∑
k=1

〈v, ek〉 ek (standard linear algebra). What happens if dim(V ) = ∞?

When can we expect that an ON systems allows for something similar?

Definition. Let V be an inner product space with dim(V ) = ∞. We call an orthonor-
mal system {e1, e2, . . .} ⊂ V closed if for every v ∈ V and every ε > 0, there exists a
sequence c1, c2, . . . , cn of constants such that∥∥∥∥∥v −

n∑
k=1

ckek

∥∥∥∥∥ < ε. (2.2)

Closed ON systems

How do we typically find numbers ck that work (they’re not unique)? One answer comes in the
form of orthogonal projections.

Definition. For a given ON system, the complex numbers 〈v, ek〉, k = 1, 2, . . ., are called
the generalized Fourier coefficients of v.

Fourier coefficients

We define the operator Pn that projects a vector onto the linear space spanned by {e1, e2, . . . , en}
by

Pnv =
n∑
k=1

〈v, ek〉 ek, v ∈ V.
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We now note that the choice ck = 〈v, ek〉 is the choice that minimizes the left-hand side in (2.2).

Indeed, suppose that u =
n∑
k=1

ckek for some constants ck. Then

‖v − u‖2 = ‖v − Pnv + Pnv − u‖2 =
/

(v − Pnv) ⊥ (Pnv − u)
/

= ‖v − Pnv‖2 + ‖Pnv − u‖2

= ‖v − Pnv‖2 +

∥∥∥∥∥
n∑
k=1

(〈v, ek〉 − ck)ek

∥∥∥∥∥
2

= ‖v − Pnv‖2 +
n∑
k=1

| 〈v, ek〉 − ck|2,

so obviously ck = 〈v, ek〉 is the unique choice that minimizes ‖v− u‖. In other words, u = Pnv
is the only element that minimizes ‖v − u‖.
Because of this, one can reformulate (equivalently) the definition of a closed ON system as
follows.

Definition. Let V be an inner product space with dim(V ) = ∞. We call an orthonormal
system {e1, e2, . . .} ⊂ V closed if for every v ∈ V

lim
n→∞

∥∥∥∥∥v −
n∑
k=1

〈v, ek〉 ek

∥∥∥∥∥ = 0.

We note that in the case where the ON system is closed, we can strengthen Bessel’s inequality
(by replacing the inequality with equality) obtaining what is known as Parseval’s identity (or
Parseval’s formula). As it turns out, the fact that Parseval’s identity holds for an ON-system
is equivalent to the fact that the ON-system is closed.

Theorem. Suppose that W = {e1, e2, . . .} is an ON system for the inner product space V .
Then W is closed if and only if Parseval’s identity holds:

∞∑
k=1

| 〈v, ek〉 |2 = ‖v‖2

for every v ∈ V .

Proof. Let v ∈ V . Then
‖v‖2 = ‖v − Pnv‖2 + ‖Pnv‖2

since v − Pnv ⊥ Pnv. Hence∥∥∥∥∥v −
n∑
k=1

〈v, ek〉 ek

∥∥∥∥∥
2

= ‖v‖2 −
n∑
k=1

| 〈v, ek〉 |2

and letting n→∞ in this equality, we see that closedness is equivalent with Parseval’s identity
holding.
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Definition. An ON-system {e1, e2, . . .} in V is called complete if, for every v ∈ V ,

〈v, ek〉 = 0 for all k = 1, 2, 3, . . . ⇔ v = 0.

We realize that completeness is something we want if we wish to use an ON-system as a basis
for V since this is needed to make representations in terms of linear combinations of basis
vectors needs to be unique to avoid problems.

Theorem. Suppose that {e1, e2, e3, . . .} is a closed infinite ON-system in V and let u, v ∈ V .
If ak = 〈u, ek〉 and bk = 〈v, ek〉, then

〈u, v〉 =
∞∑
k=1

akbk.

Generalized Parseval’s identity

Proof. Since V is a complex inner product space, the following equality (usually known as the
polarization identity) holds:

〈u, v〉 =
1

4

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

)
.

Since we have a closed ON-system, Parseval’s formula holds, so it is clear that

‖u+ v‖2 =
∞∑
k=1

|ak + bk|2

since 〈u+ v, ek〉 = 〈u, ek〉+ 〈v, ek〉 = ak + bk. Similarly, we obtain that

‖u− v‖2 =
∞∑
k=1

|ak − bk|2, ‖u+ iv‖2 =
∞∑
k=1

|ak + ibk|2, ‖u− iv‖2 =
∞∑
k=1

|ak − ibk|2.

Note also that (verify this directly)

akbk =
1

4

(
|ak + bk|2 − |ak − bk|2 + i|ak + ibk|2 − i|ak − ibk|2

)
,

so the identity in the theorem must hold.

2.6 Fourier Series?

So that brings us back to one of the main subjects of this course: Fourier series. Let’s look at
a particular inner product space.
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2.6.1 The ON Systems

We consider the space L2(−π, π) consisting of square integrable functions u : [−π, π]→ C:

ˆ π

−π
|u(x)|2 dx <∞.

We define the inner product on this space by

〈u, v〉 =
1

2π

ˆ π

−π
u(x)v(x) dx.

Note that this infers that we have the norm

‖u‖ =

(
1

2π

ˆ π

−π
|u(x)|2 dx

)1/2

,

which by definition is finite for u ∈ L2(−π, π). Let’s consider two special orthonormal systems
in this space.
The set of functions eikx, k ∈ Z, is a closed orthonormal system in E with the inner product
defined above. We consider E as a subspace of L2(−π, π). Clearly we have

‖eikx‖2 =
1

2π

ˆ π

−π
eikxe−ikx dx =

2π

2π
= 1.

Similarly, if k, l ∈ Z and k 6= l, we have

〈
eikx, eilx

〉
=

1

2π

ˆ π

−π
eikxe−ilx dx =

1

2π

ˆ π

−π
ei(k−l)x dx = 0

since ei(k−l)x is 2π-periodic. So this is an ON-system in E. The fact that it is closed is a more
difficult argument so we’ll get back to this on lecture 5. Note though, that E is a not closed in
the more general space L2(−π, π), and not complete either. This is a disadvantage, but nothing
that will cause too much problems for us.

The Real System

The set of functions
1√
2

, cos kx, k = 1, 1, 2, . . ., sin kx, k = 1, 2, 3, . . ., is a closed orthonormal

system in E with the inner product

〈u, v〉 =
1

π

ˆ π

−π
u(x)v(x) dx.

Note that the normalization constant is different compared to the complex case (why do you
think that is?). We should observe that these two systems are equivalent due to Euler’s formulas.

2.7 The Space E as an Inner Product Space

So the question right now is what do we really need?
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Most of the results we’re going to see have a more general and complete (he he..) version, but
we would need considerably more time to develop the necessary tools to attack these problems.
So what we’re going to do instead is to consider the space E with the inner product

〈u, v〉 =
1

2π

ˆ π

−π
u(x)v(x) dx, u, v ∈ E. (2.3)

This space has some serious drawbacks (the space E is not complete nor closed for example),
but these problems are not crucial to what we’re going to do.

First, let’s verify that things work as expected. When we write E, we now mean the combination
of the set E of piecewise continuous functions combined with the inner product defined by (2.3).

(i) E is a linear space. Obviously, if u ∈ E and α is a constant, then αu has the same
exception points as u (unless α = 0) and the right- and lefthand limits will exist for αu(x).
Let u, v ∈ E and let a1, a2, . . . , an be the exceptions points of u and b1, b2, . . . , bm be the
exception points of v. Then u + v has (at most) m + n exception points. Indeed, if we
sort the exception points as c1 < c2 < · · · < cn+m, then u + v will be continuous on
each ]ci, ci+1[ and the right- and lefthand limits at the exception points will exist since
either it is an exception point for u or v (potentially both), or it is a point of continuity
for u or v. Therefore the limit of the sum exist.

(ii) Equation (2.3) defines an inner product on E. Most of the properties follow from the
linearity of the integral. The fact that 〈u, u〉 = 0 implies that u = 0 is clear since

〈u, u〉 =
1

2π

ˆ π

−π
|u(x)|2 dx = 0

so u = 0 is the only possible piecewise continuous function (if u(x0) 6= 0 at some point
then there is an interval ]x0− δ, x0 + δ[ where |u(x)| > 0 and so the Riemann integral will
be strictly greater than zero).

2.7.1 Fourier Coefficients and the Riemann Lebesgue Lemma

So in general, we know that 〈u, ek〉 → 0 as k →∞ if {e1, e2, . . .} is an ON system with respect
to the inner product at hand (in our case (2.3)). This was a consequence of Bessel’s inequality.
In particular, this means that for u ∈ E, we have

lim
n→∞

ˆ π

−π
u(x)einx dx = 0.

Note that this implies that

lim
n→∞

ˆ π

−π
u(x) sin(nx) dx = 0 and lim

n→∞

ˆ π

−π
u(x) cos(nx) dx = 0.

So apparently these limits hold for all piecewise continuous functions. However, these identities
are also true for u ∈ L1(−π, π) (this needs to be proved).
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2.7.2 Bessel’s Inequality Turned Parseval’s Identity

Taking for granted that this ON system is closed (which is not clear at all at this point but
we’ll get back to that), we conclude by noting that Parsevals’s identity looks like this:

1

2π

ˆ π

−π
|u(x)|2 dx =

∞∑
k=−∞

|ck|2,

where

ck =
1

2π

ˆ π

−π
u(x)e−ikx dx, k ∈ Z.

The general form is given by

1

2π

ˆ π

−π
u(x)v(x) dx =

∞∑
k=−∞

ckdk,

where

ck =
1

2π

ˆ π

−π
u(x)e−ikx dx and dk =

1

2π

ˆ π

−π
v(x)e−ikx dx, k ∈ Z.

2.8 Why is
√
〈u, u〉 a Norm?

Let’s define ‖u‖ =
√
〈u, u〉 for u ∈ V . Then clearly ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0

(since this holds for the inner product). Furthermore, if α ∈ C we have

‖αu‖ =
√
〈αu, αu〉 =

√
αα 〈u, u〉 = |α|

√
〈u, u〉 = |α|‖u‖.

To prove that ‖u+ v‖ ≤ ‖u‖+ ‖v‖, we note that

‖u+ v‖2 = 〈u+ v, u+ v〉 = ‖u‖2 + ‖v‖2 + 〈u, v〉+ 〈v, u〉 = ‖u‖2 + ‖v‖2 + 2 Re 〈u, v〉 .

Since Re z ≤ |z| for any z ∈ C (why?), the Cauchy-Schwarz inequality implies that

2 Re 〈u, v〉 ≤ 2| 〈u, v〉 | ≤ 2‖u‖‖v‖.

Thus
‖u‖2 + ‖v‖2 + 2 Re 〈u, v〉 ≤ ‖u‖2 + ‖v‖2 + 2‖u‖‖v‖ = (‖u‖+ ‖v‖)2,

so
‖u+ v‖2 ≤ (‖u‖+ ‖v‖)2,

which proves that the triangle inequality holds.
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Chapter 3

Function Series and Convergence

“Here, stick around!”
—John Matrix

3.1 Pointwise Convergence

Let u1, u2, u3, . . . be a sequence of functions uk : I → C, where I is some set of real numbers.
We’ve seen pointwise convergence earlier, but let’s formulate it more rigorously.

Definition. We say that uk → u pointwise on I as k →∞ if

lim
k→∞

uk(x) = u(x)

for every x ∈ I. We often refer to u as the limiting function.

Pointwise convergence

Why would this not suffice? Let’s consider an example.

Let uk(x) = xk if 0 ≤ x ≤ 1, k = 1, 2, 3, . . .. Then uk(x) → 0 for 0 ≤ x < 1 and uk(x) → 1
when x = 1. Clearly uk is continuous on [0, 1] for every k, but the limiting function is
discontinuous at x = 1.

Example

x

y

y = uk(x)

1

1
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This is slightly troubling. The fact that certain properties hold for all elements in a sequence but
not for the limiting element has caused more than one engineer to assume something dangerous.
So can we require something more to ensure that, e.g., continuity is inherited? As we shall see,
if the convergence is uniform this will be true.

3.2 Uniform Convergence

Definition. Let A ⊂ R be a set of real numbers. Let α be the greatest real number so
that x ≥ α for every x ∈ A. We call α the infimum of A. Let β be the smallest real number
so that x ≤ β for every x ∈ A. We call β the supremum of A.

Supremum and infimum

Sometimes the infimum and supremum are called the greatest lower bound and least upper
bound instead. Note also that these numbers always exist; see the end of the analysis book
(the supremum axiom).

Why is minimum and maximum not enough? Well, consider for example the set A = [0, 1[.
We see that min(A) = 0 and that this is obviously also the infimum of A. However, there is
no maximum element in A. The supremum is equal to the value we would need the maximum
to attain, that is sup(A) = 1.

Observe the difference between max/min and sup/inf.

Note though, that if there is a maximum element in A, this will also be the supremum. Similarly,
if there is a smallest element in A, this will be the infimum.
So with this in mind, consider the linear space of all functions f : [a, b] → C. We define a
normed space L∞[a, b] consisting of those functions which has a finite supremum-norm:

‖f‖∞ = sup
x∈[a,b]

|f(x)| <∞.

Note that the expression in the left-hand side always exist. Note also that |f(x)| ≤ ‖f‖∞
for every x ∈ [a, b]. If we were to restrict our attention to continuous functions on [a, b], we
could exchange the supremum for maximum since we know that the maximum for a continuous
function on a closed interval is attained (see TATA41).

Definition. We say that uk → u uniformly on [a, b] as k →∞ if

lim
k→∞
‖uk − u‖∞ = 0.

Uniform convergence

Notice that if uk → u uniformly on [a, b], then uk → u pointwise on [a, b]. The converse,
however, does not hold. Let’s look at the previous example where uk = xk for 0 ≤ x ≤ 1.
Clearly uk(x) → u(x) as k → ∞, where u(x) = 0 if 0 ≤ x < 1 and u(1) = 1. However, the
convergence is not uniform:

‖uk − u‖∞ = sup
0≤x<1

xk = 1, k = 1, 2, 3, . . . ,
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so it is not the case that ‖uk − u‖∞ tends to zero. Therefore the convergence is not uniform.
There is another way to see this as well, we’ll get to that in the next section when discussing
continuity.
By definition, if uk → u uniformly on [a, b], this means that for every ε > 0, there is some
integer N such that

k ≥ N ⇒ ‖uk − u‖∞ = sup
x∈[a,b]

|uk(x)− u(x)| < ε.

This means that for every k ≥ N , the difference between uk(x) and u(x) is less than ε for
every x ∈ [a, b].

x

y

a b

u(x) + ε

uk(x)

u(x)

u(x)− ε

Let uk(x) = 0 if 1/k ≤ x ≤ 1 and let uk = 1 if 0 ≤ x < 1/k. Show that uk → u pointwise but
not uniformly, where u(x) = 0 if x > 0 and u(0) = 1.

Example

Solution. We see that the graph of uk looks like the figure below.

x

y

1

1

k

For any x ∈]0, 1], it is clear that uk(x) = 0 if k > 1/x. So uk(x)→ 0 for any x ∈]0, 1]. For x = 0
however, there’s no k > 0 such that uk(0) = 0. The limiting function is u(x) = 0 for x > 0
and u(0) = 1. Hence the convergence cannot be uniform, similar to the previous example.
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Show that uk(x) = x+
1

k
x2 converges uniformly on [0, 2].

Example

Solution. Clearly uk(x)→ x as k →∞ for x ∈ [0, 2] (for x ∈ R really). Hence the pointwise
limit is given by u(x) = x. Now, observe that

|uk(x)− u(x)| =
∣∣∣∣1kx2

∣∣∣∣ ≤ 1

k
x2,

so

‖uk − u‖L∞(0,2) ≤
1

k
22 =

4

k
→ 0,

as k →∞. Hence the convergence is indeed uniform on [0, 2].

Let uk(x) = sin(x+ 1/k) for −π ≤ x ≤ π and k > 0. Does uk converge uniformly?

Example

Solution. Since sin is continuous, we have uk(x)→ sinx for x ∈ R.

x

y

Since sin is differentiable, the mean value theorem implies that

sin(x+ 1/k)− sinx = (x+ 1/k − x) cos ξ,

for some ξ between x and x+ 1/k. Hence

| sin(x+ 1/k)− sinx| ≤ |x+ 1/k − x| = 1

k

since | cos ξ| ≤ 1. From this it follows that

sup
x
| sin(x+ 1/k)− sinx| ≤ 1

k
→ 0,

so the convergence is uniform.
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Chapter 3. Function Series and Convergence 3.3. Continuity and Differentiability

3.3 Continuity and Differentiability

Knowing that a sequence uk converges pointwise to some function u is not enough to infer that
properties like continuity and differentiability are inherited. However, uniform convergence
implies that certain properties are inherited by the limiting function.

Theorem. If u1, u2, u3, . . . is a sequence of continuous functions uk : [a, b]→ C and uk → u
uniformly on [a, b], then u is continuous on [a, b].

Proof. To prove that the limiting function u is continuous, we’ll need the δ-ε stuff. Let x and x0

belong to [a, b] and let ε > 0. We will show that there exists a δ > 0 so that |u(x)− u(x0)| < ε
whenever |x−x0| < δ, which proves that u is continuous at x0. Since x0 is arbitrary, this proves
that u is continuous on [a, b].
Now let’s do some triangle inequality magic:

|u(x)− u(x0)| = |u(x)− uk(x) + uk(x)− uk(x0) + uk(x0)− u(x0)|
≤ |u(x)− uk(x)|+ |uk(x)− uk(x0)|+ |uk(x0)− u(x0)|
≤ ‖u− uk‖∞ + |uk(x)− uk(x0)|+ ‖uk − u‖∞ = 2‖u− uk‖∞ + |uk(x)− uk(x0)|,

since |f(x)| ≤ ‖f‖∞ for any f : [a, b] → C. Since uk → u uniformly on [a, b], we know
that ‖uk − u‖∞ → 0, so there exists N ∈ N so that ‖uk − u‖∞ < ε/3 for k ≥ N . Furthermore,
since uk is continuous, there exists a δ > 0 so that |uk(x)−uk(x0)| < ε/3 whenever |x−x0| < δ.
Thus we obtain that

|u(x)− u(x0)| < 2 · ε
3

+
ε

3
= ε

whenever |x− x0| < δ.

We can exploit the negation of this theorem to prove that a sequence is not uniformly con-
vergent. Suppose that

(i) u1, u2, u3, . . . is a sequence of continuous functions.

(ii) uk(x)→ u(x) pointwise on [a, b].

(iii) There is some x0 ∈ [a, b] where the limiting function u is not continuous.

Then the convergence of the sequence can not be uniform!

Use discontinuity to prove that convergence is not uniform

Let’s consider the example from the first section again.

Let uk(x) = xk if 0 ≤ x ≤ 1, k = 1, 2, 3, . . .. Then uk(x) → 0 for 0 ≤ x < 1 and uk(x) → 1
when x = 1. Clearly uk is continuous on [0, 1] for every k, but the limiting function is
discontinuous at x = 1. Hence the convergence cannot be uniform!

Example

It’s not just the continuity that’s easier to infer, we can also work with integrals like they were
sums and exchange the order of integration and taking limits.
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3.3. Continuity and Differentiability Chapter 3. Function Series and Convergence

Theorem. Suppose that u1, u2, u3, . . . is a sequence of continuous functions uk : [a, b] → C
and that uk → u uniformly on [a, b]. Then

lim
k→∞

ˆ b

a

uk(x) dx =

ˆ b

a

lim
k→∞

uk(x) dx =

ˆ b

a

u(x) dx.

Proof. Assume that b > a. Since the integral is monotonous (we get a bigger value when
moving the modulus inside), we see that∣∣∣∣ˆ b

a

uk(x) dx−
ˆ b

a

u(x) dx

∣∣∣∣ =

∣∣∣∣ˆ b

a

(
uk(x)− u(x)

)
dx

∣∣∣∣ ≤ ˆ b

a

∣∣uk(x)− u(x)
∣∣ dx

≤
ˆ b

a

∥∥uk − u∥∥∞ dx =
∥∥uk − u∥∥∞ˆ b

a

dx

=
∥∥uk − u∥∥∞(b− a)→ 0, as k →∞,

since ‖uk − u‖∞ is independent of x.
Remark. There are other results of this type with much weaker assumptions. Continuity is not
necessary (it is enough the it is a sequence of integrable functions) and the uniform convergence
can be exchanged for weaker types of convergence as well (dominated convergence).

Find the value of lim
n→∞

ˆ 1

0

nx+ 1

nx2 + x+ n
dx.

Example

Solution. Let un(x) =
nx+ 1

nx2 + x+ n
, n = 1, 2, 3, . . . and 0 ≤ x ≤ 1. Then

nx+ 1

nx2 + x+ n
=

x+ 1/n

x2 + 1 + x/n
→ x

x2 + 1
,

as n→∞. Moreover,∣∣∣∣ nx+ 1

nx2 + x+ n
− x

x2 + 1

∣∣∣∣ =

∣∣∣∣(nx+ 1)(x2 + 1)− x(nx2 + x+ n)

(x2 + 1)(nx2 + x+ n)

∣∣∣∣
=

∣∣∣∣ 1

(x2 + 1)(nx2 + x+ n)

∣∣∣∣ =
1

n

∣∣∣∣ 1

(x2 + 1)(x2 + x/n+ 1)

∣∣∣∣ ≤ 1

n

since 1 + x2 ≥ 1 and x2 + x/n+ 1 ≥ 1. Clearly this means that

sup
0≤x≤1

∣∣∣∣ nx+ 1

nx2 + x+ n
− x

x2 + 1

∣∣∣∣ ≤ 1

n
→ 0,

as n→∞. The convergence is therefore uniform and

lim
n→∞

ˆ 1

0

nx+ 1

nx2 + x+ n
dx =

ˆ 1

0

lim
n→∞

nx+ 1

nx2 + x+ n
dx =

ˆ 1

0

x

x2 + 1
dx

=

[
1

2
ln
(
1 + x2

)]1

0

=
ln 2

2
.
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Chapter 3. Function Series and Convergence 3.4. Series

Notice the steps in the previous example:

(i) Find the pointwise limit u(x) of uk(x).

(ii) Find a uniform bound for |uk(x) − u(x)| that tends to zero as k → ∞ (independently
of x).

(iii) Deduce that uk → u uniformly.

(iv) Move the limit inside the integral, effectively replacing limuk by u, and calculate the
resulting integral.

There are no short-cuts. Without a clear motivation about the fact that we have uniform
convergence and what this means, the result will be zero points (even with the“right answer”).

Integrals and uniform limits

So what about taking derivatives? That’s slightly more difficult.

Theorem. Let u1, u2, u3, . . . be a sequence of differentiable functions uk : [a, b] → C.
If uk → u pointwise on [a, b] and u′k → v uniformly on [a, b], where v is continuous, then u is
differentiable on [a, b] and u′ = v.

Proof. Since uk is differentiable, it is clear that

uk(x)− uk(a) =

ˆ x

a

u′k(t) dt, x ∈ [a, b].

By assumption, u′k → v uniformly on [a, b], so the previous theorem implies thatˆ x

a

u′k(t) dt→
ˆ x

a

v(t) dt.

Since uk → u pointwise on [a, b], we must have that u(x)− u(a) =

ˆ x

a

v(t) dt. We know that v

is continuous, so the fundamental theorem of calculus proves that u′ = v on [a, b].

3.4 Series

Let u0, u1, u2, u3, . . . be a sequence of functions uk : I → C, where I is some set. As stated

earlier, we define the series S(x) =
∞∑
k=0

uk(x) for those x where the limit exist. This is the

pointwise limit of the partial sums Sn(x) =
n∑
k=0

uk(x). When does the sequence S0, S1, S2, . . .

converge uniformly? And why would we be interested in this? Well, a rather typical question
is if the series converge to something continuous, or differentiable. And whether we can take
the derivative of a series — or an integral — termwise. In other words, when does a series
behave like we are used to when working with a power series? Uniform convergence is a tool to
obtain many of these properties and one way of proving uniform convergence is the Weierstrass
M-test.
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3.4. Series Chapter 3. Function Series and Convergence

Theorem. Let I ⊂ R. Suppose that there exists positive constants Mk, k = 1, 2, . . ., such

that |uk(x)| ≤Mk for x ∈ I. If
∞∑
k=1

Mk <∞, then
∞∑
k=1

uk(x) converges uniformly on I.

Weierstrass M-test

Proof. Since |uk(x)| ≤Mk and
∞∑
k=1

Mk is convergent, it is clear that

u(x) =
∞∑
k=1

uk(x)

exists for every x ∈ I. Now∥∥∥∥∥u(x)−
n∑
k=1

uk(x)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∞∑
k=1

uk(x)−
n∑
k=1

uk(x)

∥∥∥∥∥
∞

=

∥∥∥∥∥
∞∑

k=n+1

uk(x)

∥∥∥∥∥
∞

≤
∞∑

k=n+1

‖uk(x)‖∞ ≤
∞∑

k=n+1

Mk → 0,

as k →∞. By definition, this implies that the series is uniformly convergent.

By considering the sequence of partial sums Sn(x), n = 0, 1, 2, . . ., of a uniformly convergent

series
∞∑
k=0

uk(x), we can express some of the results from the preceding sections in a more

convenient form for working with function series.

Suppose that u(x) =
∞∑
k=0

uk(x) is uniformly convergent for x ∈ [a, b]. If u0, u1, u2, . . . are

continuous functions on [a, b], then the following holds.

(i) The series u is a continuous function on [a, b].

(ii) We can exchange the order of summation and integration:

ˆ d

c

u(x) dx =

ˆ d

c

(
∞∑
k=0

uk(x)

)
dx =

∞∑
k=0

ˆ d

c

uk(x) dx, for a ≤ c < d ≤ b.

(iii) If in addition
∞∑
k=0

u′k(x) converges uniformly on [a, b], then

u′(x) =
d

dx

(
∞∑
k=0

uk(x) dx

)
=
∞∑
k=0

d

dx
uk(x) =

∞∑
k=0

u′k(x), x ∈ [a, b].

Series and uniform convergence
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Chapter 3. Function Series and Convergence 3.5. The Dirichlet Kernel

Note that all of the above also holds for series of the form
∞∑

k=−∞

uk(x) when using symmetric

partial sums Sn(x) =
n∑

k=−n

uk(x).

Let 0 < a < 1 and ab > 1. Show that u(x) =
∞∑
k=1

ak sin(bkπx) is continuous.

Example

Solution. We see that ∣∣ak sin(bkπx)
∣∣ ≤ ak, k = 1, 2, 3, . . . ,

since | sin(bkπx)| ≤ 1. Since
∞∑
k=1

ak is a geometric series with quotient a and |a| < 1, we know

that this series is convergent. Thus, by Weierstrass’ M-test, it follows that the original series is
convergent (absolutely) and that u is continuous.
Note that we didn’t calculate the exact ‖ · ‖∞ norm (well we actually did but we never claimed
that the bound was the actual maximum). We just estimated with something that is an upper
bound. This is typical (and usually enough). This series is especially interesting since it is
an example of a function that is continuous, but nowhere differentiable (it is usually referred
to as Weierstrass’ function). The fact that it is not differentiable is not obvious, but it shows
that uniform convergence isn’t enough to ensure that the limit of something differentiable is
differentiable.
In fact, the Weierstrass function does not even have one-sided derivatives (finitely) at any point.
So this is an example of a continuous function that definitely does not belong to E ′.

3.5 The Dirichlet Kernel

Consider the complex Fourier series of u. Let us write out and exchange the order of summation
and integration according to

Sn(x) =
n∑

k=−n

cke
ikx =

n∑
k=−n

(
1

2π

ˆ
T

u(t)e−ikt dt

)
eikx =

1

2π

ˆ
T

u(t)

(
n∑

k=−n

e−ikteikx

)
dt

=
1

2π

ˆ
T

u(t)

(
n∑

k=−n

eik(x−t)

)
dt.

The sum in the parentheses is usually referred to as the Dirichlet kernel.

Definition. We define the Dirichlet kernel by

Dn(x) =
n∑

k=−n

eikx, x ∈ R, n = 1, 2, 3, . . .

The Dirichlet kernel
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n = 1

n = 2

n = 5

n = 10

x

y

10

20

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

This means that we can write

Snu(x) =
1

2π

ˆ
T

u(t)Dn(x− t) dt =
1

2π

ˆ
T

u(s+ x)Dn(−s) ds =
1

2π

ˆ
T

u(s+ x)Dn(s) ds,

so the partial sums of the Fourier series is given by a convolution of u with the Dirichlet kernel
(we will get back to convolutions later on). In the first equality, we changed variables (t−x = s)
and used the fact that u and Dn are periodic so that we can use the same domain of integration
and also that Dn is an even function. The reason for this representation of the partial sums
will become clear below.

Let us collect some properties of the Dirichlet kernel.

Theorem.

(i) Dn(2kπ) = 2n+ 1, k ∈ Z.

(ii) Dn(x) =
sin((2n+ 1)x/2)

sin(x/2)
, x 6= 2kπ, k ∈ Z.

(iii)

ˆ
T

Dn(x) dx = 2π.
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Chapter 3. Function Series and Convergence 3.6. Pointwise Convergence

Proof.

(i) Since ei2kπ = 1 for k ∈ Z, it is clear that Dn(2kπ) = 2n + 1 since there are 2n + 1 terms
in the sum Dn(x).

(ii) For x 6= 2kπ, we observe that Dn(x) is a geometric sum with quotient eix 6= 1, first
term e−inx and 2n+ 1 terms, so

Dn(x) = e−inx · e
i(2n+1)x − 1

eix − 1
= e−i(n+1/2)x · e

i(2n+1)x − 1

eix/2 − e−ix/2
=
ei(n+1/2)x − e−i(n+1/2)x

eix/2 − e−ix/2

=
sin((n+ 1/2)x)

sin(x/2)
,

which is the same expression as given in the statement above.

(iii) We see that

ˆ π

−π
Dn(x) dx =

ˆ π

−π

(
n∑

k=−n

eikx

)
dx =

ˆ π

−π

(
1 +

n∑
k=1

(
eikx + e−ikx

))
dx

= 2π +
n∑
k=1

2

ˆ π

−π
cos kx dx = 2π,

since all the integrals in the sum are equal to zero.

3.6 Pointwise Convergence

We now have the tools to prove that for a function in the space E ′ (so left- and righthand
derivatives exist), the Fourier series actually converges to something that involves the function.

Theorem. Let u ∈ E ′. Then

Sn(x) =
n∑

k=−n

cke
ikx → u(x+) + u(x−)

2
, x ∈ [−π, π].

In other words, the Fourier series of u converges pointwise to
u(x+) + u(x−)

2
for x ∈ [−π, π].

In particular, if u also is continuous at x, then lim
n→∞

Sn(x) = u(x).

Pointwise convergence (Dirichlet’s theorem)

Notice the following.

(i) It is sufficient for u ∈ E (not E ′) to have left- and righthand derivatives at a specific
point x for

lim
n→∞

Sn(x) =
u(x+) + u(x−)

2

to hold at the point x. The condition that u ∈ E ′ ensures that this is true for all x.
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3.6. Pointwise Convergence Chapter 3. Function Series and Convergence

(ii) The number (u(π+)+u(π−))/2 is defined since u is 2π-periodic so that u(π+) = u((−π)+)
(the righthand limit at π must be equal to the righthand limit at −π) and similarly
for u((−π)−).

Proof. Let x ∈ [−π, π] be fixed (meaning that we won’t change the value). We will prove that

lim
n→∞

1

2π

ˆ π

0

u(x+ t)Dn(t) dt =
u(x+)

2
. (3.1)

A completely analogous argument would show that

lim
n→∞

1

2π

ˆ 0

−π
u(x+ t)Dn(t) dt =

u(x−)

2

and these two limits taken together proves the statement in the theorem.
First we note that

1

2π

ˆ π

0

u(x+ t)Dn(t) dt− u(x+)

2
=

1

2π

ˆ π

0

(
u(x+ t)− u(x+)

)
Dn(t) dt

since Dn(t) is an even function so
1

2π

ˆ π

0

Dn(t) dt =
1

2
(see the theorem about the Dirichlet

kernel above). The same theorem also provides the identity Dn(x) =
sin((2n+ 1)x/2)

sin(x/2)
, so

(
u(x+ t)− u(x+)

)
Dn(t) =

(
u(x+ t)− u(x+)

)sin((2n+ 1)t/2)

sin(t/2)

=
u(x+ t)− u(x+)

t
· t

sin(t/2)
· sin (nt+ t/2) .

Since u ∈ E ′, we know that the righthand derivative of u at x exists, so

u(x+ t)− u(x+)

t
· t

sin(t/2)
→ 2D+u(x). (3.2)

This means that the expression in the left-hand side of (3.2) is bounded on [0, π] (since it is
quite nice outside of the origin). Hence it also belongs to L2(0, π) and E since u is piecewise
continuous. Letting

v(t) =


u(x+ t)− u(x+)

t
· t

sin(t/2)
, 0 ≤ t ≤ π,

0, −π < t < 0,

it is clear that v ∈ E ⊂ L2(−π, π). By the Riemann-Lebesgue lemma, it now follows that

lim
n→∞

1

2π

ˆ π

0

(
u(x+ t)− u(x+)

)
Dn(t) dt = lim

n→∞

1

2π

ˆ π

0

v(t) sin ((n+ 1/2)t) dt = 0,

which proves that (3.1) holds.
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Find the Fourier series for the sign-function sgn(x) = −1 if x < 0, sgn(0) = 0 and sgn(x) = 1
if x > 0. Prove when and to what it converges to.

Example

Solution. The Fourier coefficients can be calculated as follows:

c0 =
1

2π

ˆ π

−π
sgn(x) dx = 0

since sgn is odd, and for k 6= 0,

ck =
1

2π

ˆ π

−π
sgn(x)e−ikx dx =

1

2π

(ˆ 0

−π
−e−ikx dx+

ˆ π

0

e−ikx dx

)
=

1

2π

([
e−ikx

ik

]0

−π
+

[
−e
−ikx

ik

]π
0

)

=
1

2π

(
1

ik
− (−1)k

ik
− (−1)k

ik
+

1

ik

)
=

2(1− (−1)k)

2π · ik

= i
(−1)k − 1

πk
.

Hence

u(x) ∼
∞∑

k=−∞
k 6=0

i
(−1)k − 1

πk
eikx.

For −π < x < 0 and 0 < x < π, u is continuously differentiable so the Fourier series converges
to u(x). For x = 0, both right- and lefthand derivative exists (both are zero) so the Fourier
series converges to (u(0−) + u(0+))/2 = (−1 + 1)/2 = 0. This happens to be equal to sgn(0),
but this is more of a coincidence. Indeed, we could redefine sgn(0) = A for any number A we
would like and the Fourier series would still converge to 0. For the endpoints, the right- and
lefthand derivatives exist (respectively) so the Fourier series converges to (u(−π)+u(π))/2 = 0.
Note the analogous situation as that which occurs at x = 0.
We can now draw the Fourier series since we have analyzed in detail what the series converges
to at every point.

x

y

π−π

1

−1
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Recall that if u(x) = x2 for −π < x < π, then u(x) ∼ π2

3
+

∞∑
k=−∞
k 6=0

2(−1)k

k2
eikx. Use this to

evaluate the series
∞∑
k=1

(−1)k

k2
.

Example

Solution. Since x2 is continuously differentiable on ]− π, π[, continuous on [−π, π] with right-
and lefthand derivatives at the endpoints (respectively), and (−π)2 = π2, it is clear that the
Fourier series of u(x) converges to u(x) for any x ∈ [−π, π]. Especially this holds for x = 0.
Therefore

0 = u(0) =
π2

3
+

∞∑
k=−∞, k 6=0

2(−1)k

k2
eik·0 =

π2

3
+ 2

∞∑
k=1

2(−1)k

k2
=
π2

3
+ 4

∞∑
k=1

(−1)k

k2
,

so
∞∑
k=1

(−1)k

k2
= −π

2

12
.

Could you use the stuff from the previous example to calculate
∞∑
k=1

1

k2
?

Let u(x) =
1

2
+cos x for 0 < x ≤ π, u(0) = 0, and u(x) = 1−cosx for −π < x < 0. Show that

the Fourier series for the periodic extension of u converges and find the limit of the Fourier
series. Where is it equal to u? What’s the value of the Fourier series at π? At 2π? Can the
convergence be uniform?

Example

Solution. Note that the we do not need to find the Fourier series to answer this question. The
function is piecewise continuous and has right- and left-hand derivatives at all points. Hence,
by Dirichlet’s theorem above, we know that the Fourier series converges to (u(x+) + u(x−))/2
at all points. So the Fourier series exists (since u ∈ E) and is convergent. As to what the
limit S(x) of the Fourier series actually is, let’s first draw a graph of the function u (being very
careful at the exception points).

x

y

3π2ππ−π−2π

1

−1
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So, again, we know that S(x) =
u(x+) + u(x−)

2
at every x ∈ R since u ∈ E has right- and

lefthand derivatives at every point (is this clear?). For points of continuity of u, that means
that S(x) = u(x). For the “jump” points, we take the mean value. This produces the graph
below.

x

y

3π2ππ−π−2π

1

−1

What you shouldn’t miss here is the fact that it’s completely irrelevant what value the function u
takes at a single point. It’s only the limits of the function that has any effect on the limit of
the Fourier series.
From this graph we immediately find that

S(π) =
u(π−) + u(π+)

2
=
−1/2 + 2

2
=

3

4

and that

S(2π) =
u(2π−) + u(2π+)

2
=

0 + 3/2

2
=

3

4
.

Note in particular that we get the same value, but for two completely different reasons. This
is a coincidence (well.. the reason is the symmetry of the function u).
The convergence of the partial sums Sn(x) can not be uniform on any set that includes a
point x = kπ for some integer k. The reason for this is that S(x) is discontinuous at such points,
whereas the partial sums Sn(x) (being trigonometric polynomials) are continuous functions
on R. Having the limiting function S(x) being discontinuous would violate the convergence
being uniform.
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Chapter 4

Stronger Types of Convergence

“I did nothing! The pavement was his enemy.”
—Julius Benedict

4.1 Absolute Convergence

So we have obtained sufficient conditions for the Fourier series to converge to the mean value
of the left- and righthand limits of the function. Note though that we have said nothing about
necessary conditions (and this is not really something we will be able to cover in this course).
So let’s look in the other direction instead: when can we obtain a stronger type of convergence?

Suppose that {ck}k∈Z ∈ l1(Z), meaning that the series
∞∑

k=−∞

|ck| < ∞, which implies that the

Fourier series
∞∑

k=−∞

cke
ikx converges absolutely. This implies that we have uniform convergence.

Let’s formulate a theorem.

Theorem. Suppose that
∞∑

k=−∞

|ck| <∞. Then
∞∑

k=−∞

cke
ikx converges uniformly.

Proof. Note that

S(x) =
∞∑

k=−∞

cke
ikx

converges for every x ∈ R since

|S(x)− Sn(x)| =

∣∣∣∣∣∣
∑
|k|>n

cke
ikx

∣∣∣∣∣∣ ≤
∑
|k|>n

|ck| → 0,

as n→∞. Note also that the last series is independent of x, which implies uniform convergence:

sup
x
|S(x)− Sn(x)| ≤

∑
|k|>n

|ck| → 0,

as n→∞.
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4.2 A Case Study: u(x) = x

Consider the case when u(x) = x for −π < x < π (and periodically extended to R). You’ve
seen this before, but let’s find the Fourier coefficients. Clearly c0 = 0 (the function is odd) and
for k 6= 0, integration by parts yields

ck =
1

2π

ˆ π

−π
xe−ikx dx =

1

2π

([
xe−ikx

−ik

]π
−π

+
1

ik

ˆ π

−π
e−ikx dx

)
=

1

2π

(
2π(−1)k

−ik
+ 0

)
=

(−1)k+1

ik
.

Since u is continuously differentiable for −π < x < π, we know from the previous lecture that

∞∑
k=−∞

cke
ikx = x, −π < x < π.

We also know that the Fourier series converges to 0 at x = ±π. Since the limit function is
discontinuous at ±π, the convergence can not be uniform on [−π, π], but there’s a possibility
that the convergence is uniform for a < x < b with −π < a < b < π.

x

y

n = 2

n = 3

n = 5

n = 10

n = 50

n = 100

−3 −2 −1 1 2 3

1

−1

2

−2

3

−3

Let’s show the following fact.

Theorem. For 0 < b < π, the Fourier series for u(x) = x, −π < x < π, converges uniformly
on [−b, b].
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Proof. Suppose that m,n ∈ N and that m > n. Let

Sl(x) =
l∑

k=−l

cke
ikx, l = 1, 2, 3, . . . ,

be the partial sums for the Fourier series of u(x) = x, −π < x < π. We will show that

sup
x∈[−b,b]

|Sm(x)− Sn(x)| → 0,

as m,n → ∞. This is sufficient for obtaining uniform convergence (and is known as Cauchy’s
criterion for uniform convergence). First we note that

Sm(x)− Sn(x) =
m∑

k=−m

cke
ikx −

n∑
k=−n

cke
ikx =

−(n+1)∑
k=−m

cke
ikx −

m∑
k=n+1

cke
ikx

=
m∑

k=n+1

(
(−1)k+1

ik
eikx +

(−1)−k+1

−ik
e−ikx

)
=

m∑
k=n+1

(−1)k+1

ik

(
eikx − e−ikx

)
.

We need to exploit the fact that the terms are both positive and negative to show that this is
small. For this purpose, we observe that δ = cos(b/2) > cos(π/2) = 0. If we were to multiply
a term in the series by cos(x/2), we would obtain

cos
(x

2

) (−1)k+1

ik

(
eikx − e−ikx

)
=

(−1)k+1

i2k

(
eix/2 + e−ix/2

) (
eikx − e−ikx

)
=

(−1)k+1

i2k

(
ei(k+1/2)x + ei(k−1/2)x − e−i(k−1/2)x − e−i(k+1/2)x

)
=

(−1)k+1

k

(
sin

(
k +

1

2

)
x+ sin

(
k − 1

2

)
x

)
.

Examining the sum of these terms more closely, we find that

m∑
k=n+1

(−1)k+1

k

(
sin

(
k +

1

2

)
x+ sin

(
k − 1

2

)
x

)
is equal to

(−1)n+1

(
sin
(
n+ 3

2

)
x+ sin

(
n+ 1

2

)
x

n+ 1
−

sin
(
n+ 5

2

)
x+ sin

(
n+ 3

2

)
x

n+ 2

+
sin
(
n+ 7

2

)
x+ sin

(
n+ 5

2

)
x

n+ 3
−

sin
(
n+ 9

2

)
x+ sin

(
n+ 7

2

)
x

n+ 4

+ · · · ±
sin
(
m− 1

2

)
x+ sin

(
m− 3

2

)
x

m− 1
∓

sin
(
m+ 1

2

)
x+ sin

(
m− 1

2

)
x

m

)
.

We can rearrange the terms in the parenthesis as

sin
(
n+ 1

2

)
x

n+ 1
+ (−1)n+1

m−1∑
k=n+1

(−1)k
(

1

k
− 1

k + 1

)
sin

(
k +

1

2

)
x+ (−1)m

sin
(
m+ 1

2

)
x

m
.
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Using the fact that | sin t| ≤ 1 for t ∈ R, we now obtain that

|Sm(x)− Sn(x)| ≤ δ−1

(
1

n+ 1
+

m−1∑
k=n+1

∣∣∣∣1k − 1

k + 1

∣∣∣∣+
1

m

)

≤ δ−1

(
1

n+ 1
+

m−1∑
k=n+1

1

k(k + 1)
+

1

m

)
≤ δ−1

(
2

n
+

∞∑
k=n+1

1

k2

)
→ 0,

as n→∞ since the series of 1/k2 is convergent and 2/n→ 0.

So that was awesome (or absolutely positively horrifying). We’ll need the Fourier expansion
of x later on in this lecture.

4.3 Uniform Convergence

So as seen from the previous case study, proving uniform convergence directly can be rather
cumbersome. And obviously, demanding that we have absolute convergence is rather restrictive.
We would prefer less draconian requirements that are easier to verify. Too much to ask for?
Not really!

Theorem. Suppose that u is continuous on [−π, π], that u(−π) = u(π) and that u′ ∈ E.
Then the Fourier series of u converges uniformly to u on [−π, π].

Proof. Since u′ ∈ E, we know that u′ has a Fourier series

u′(x) ∼
∞∑

k=−∞

dke
ikx,

where

dk =
1

2π

ˆ π

−π
u′(t)e−ikt dt, k ∈ Z.

Furthermore, the fact that u(−π) = u(π) implies that d0 = 0:

d0 =
1

2π

ˆ π

−π
u′(t) dt =

u(π)− u(−π)

2π
= 0.

Now, since u′ ∈ E, it is clear that u ∈ E ′, which implies that u has a convergent Fourier series

u(x) =
∞∑

k=−∞

cke
ikx,

where the equality follows from the fact that u is continuous and

ck =
1

2π

ˆ π

−π
u(t)e−ikt dt, k ∈ Z.

How are ck and dk related? Assuming that k 6= 0, we have

dk =
1

2π

ˆ π

−π
u′(t)e−ikt dt = / I.B.P. / =

1

2π

([
u(t)e−ikt

]π
−π + ik

ˆ π

−π
u(t)e−ikt dt

)
= ikck
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since u(π)e−ikπ = u(−π)eikπ for k ∈ Z. Now, Bessel’s inequality shows that

∞∑
k=−∞

|dk|2 ≤ ‖u′‖2
L2(−π,π) <∞,

and since dk = ikck, this implies that

∞∑
k=−∞

k2|ck|2 ≤ ‖u′‖2
L2(−π,π) <∞.

Note that we could have used Parseval’s identity in the place of Bessel’s inequality, but we
haven’t shown why this holds yet. Now, by the Cauchy-Schwarz inequality,

∞∑
k=1

|ck| =
∞∑
k=1

∣∣∣∣1k · kck
∣∣∣∣ ≤

(
∞∑
k=1

1

k2

)1/2( ∞∑
k=1

k2|ck|2
)1/2

<∞,

and similarly for k < 0. By Weierstrass’ M-test, it now follows that

∞∑
k=−∞

cke
ikx

is uniformly convergent since |ckeikx| ≤ |ck| due to the fact that |eikx| = 1.

The proof of the previous theorem exploits the fact that u is quite smooth (meaning that u′

exists) to obtain that the Fourier coefficients of u tend to zero faster than if u was not smooth.
This is something important when it comes to Fourier analysis: a smoother function provides
better convergence. What could we do if u is twice differentiable?

Smoothness and convergence

We can also “localize” the previous theorem to show that we actually have uniform convergence
on any interval [a, b] ⊂ [−π, π] such that u is continuous with a piecewise continuous derivative.

Theorem. Suppose that u is continuous on [a, b] ⊂ [−π, π] and that u, u′ ∈ E[−π, π]. Then
the Fourier series of u converges uniformly to u on [a, b].

Proof. We will use that fact that the Fourier series for v(x) = x converges uniformly on every
interval [−c, c] ⊂] − π, π[ to modify u(x) so that we can apply the previous (global) uniform
convergence result. To this end, let v(x) = x for −π < x < π and v(±π) = 0. Moreover, let

−π < d1 < d2 < · · · < dn ≤ π,

where dk are the points of discontinuity of u (where the function “jumps”). We can also rede-
fine u(±π) so that these values are equal (and thereby possible adding a new point dk). This
will not affect the result since [a, b] ⊂]− π, π[. Furthermore, define

δk = u(d+
k )− u(d−k ), k = 1, 2, . . . , n.

To obtain a function continuous on [−π, π], we consider the following construction:

w(x) = u(x) +
n∑
k=1

δk
2π
v(x+ π − dk), x ∈ [−π, π].

55



4.4. Periodic Solutions to Differential Equations Chapter 4. Stronger Types of Convergence

x

y

π−π dk

u(x)

f(x) =
δk
2π
v(x+ π − dk)

u(x) + f(x)

Since v(x) has a jump at x = ±π + 2πk of the size 2π (jumps from π to −π), it is clear that

w(d+
m)− w(d−m) = δm +

δm
2π
v(d+

m + π − dm)− δm
2π
v(d−m + π − dm)

= δm

(
1 +

v(d+
m + π − dm)− v(d−m + π − dm)

2π

)
= δm

(
1 +
−π − π

2π

)
= 0

for m = 1, 2, . . . , n. If x 6= dk for every k = 1, 2, . . . , n, then w is continuous since both u
and x 7→ v(x + π + dk) are continuous at x. After possible redefinition at the points {dk}, we
have shown that w is continuous on [−π, π] and that w(π) = w(−π).
The previous theorem then proves that the Fourier series of w converges uniformly on [−π, π].
Moreover, we know that v(x) = x has a Fourier series that converges uniformly on [−c, c] for

any 0 < c < π. This implies that the Fourier series of
δk
2π
v(x+ π − dk) converges uniformly on

any interval [a, b] ⊂]−π, π[ that does not contain dk. By assumption, u is continuous on [a, b] so

there are no jump points in [a, b]. Since the Fourier series of both w(x) and
n∑
k=1

δk
2π
v(x+π−dk)

converges uniformly on [a, b], this must also hold for the Fourier series of u(x) on [a, b].

4.4 Periodic Solutions to Differential Equations

Remember the most fun part in TATA42? Yeah, me too! Suppose that we wish to find a
periodic solution to a differential equation, could we make an ansatz and find a solution as its
Fourier series? Hypothetically yes, but the theory is a bit more difficult and subtle than the
corresponding case with a power series approach. Let’s consider an example.
Notice first that if y is differentiable and periodic, then y′ is also periodic with the same period.
Indeed,

y′(x+ T ) = lim
h→0

y(x+ T + h)− y(x+ T )

h
= lim

h→0

y(x+ h)− y(x)

h
= y′(x).
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Find all 2π-periodic solutions to y′′(x)− 2y(x+ π) = cos x.

Example

Solution. So, the plan is to assume that y(x) =
∞∑

k=−∞

cke
ikx and plug this into the equation

and identify the coefficients ck (just as in TATA42). Note though, that we expressed that y(x)
was equal to its Fourier series above. This is not clear without motivation, so here goes.
Reformulating the equation, we see that y′′ = cosx+ 2y(x+ π). Since we’re seeking a function
that’s at least differentiable, this means that y must be continuous. Hence y′′ is also continuous.
Why? Well,

y′′ = 2y(x+ π) + cos x (4.1)

so since both y and cosx are continuous, this must mean that y′′ is also continuous. This means
that y ∈ C2(R). Therefore, the right-hand side of (4.1) is obviously twice differentiable and
so y′′′ must be continuous. Hence y ∈ C3(R). This is sufficient for letting

y(x) =
∞∑

k=−∞

cke
ikx,

y′(x) =
∞∑

k=−∞

ikcke
ikx,

y′′(x) =
∞∑

k=−∞

−k2cke
ikx,

something that is clear from Dirichlet’s theorem (if f ∈ E ′ is continuous then the Fourier series
converges to f). Furthermore,

y(x+ π) =
∞∑

k=−∞

cke
ik(x+π) =

∞∑
k=−∞

cke
ikπeikx =

∞∑
k=−∞

ck(−1)keikx.

Therefore, we must have

y′′(x)− 2y(x+ π) = cos x ⇔
∞∑

k=−∞

(−k2 − 2(−1)k)cke
ikx = cosx =

1

2
eix +

1

2
e−ix.

By uniqueness (we’re looking for continuous functions), it then follows that

ck(−k2 − 2(−1)k) = 1/2, k = ±1,

ck(−k2 − 2(−1)k) = 0, k 6= ±1.

So c1 = 1/2 and 3c−1 = 1/2, so c−1 = c1 = 1/2. For k 6= ±1, we must have ck = 0
or −k2 − 2(−1)k = 0. Clearly

−k2 − 2(−1)k = 0 ⇔ k2 = 2(−1)k+1

has no solutions in Z since either k2 = −2 (nothing real) or k2 = 2 (nothing integer valued or
even rational). We have now obtained that

y(x) =
∞∑

k=−∞

cke
ikx =

1

2
e−ix +

1

2
eix = cosx.
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4.5 Rules for Calculating Fourier Coefficients

Theorem. Suppose that u, v ∈ E. Then âu+ bv[k] = aû[k] + bv̂[k].

Linearity

Proof. This follows from the linearity of the integral and the fact that everything is convergent
for functions in E.
We’ve already seen the following result in the previous sections.

Theorem. Suppose that u′ ∈ E and u is continuous with u(−π) = u(π). If u ∼
∞∑

k=−∞

cke
ikx,

then u′(x) ∼
∞∑

k=−∞

ikcke
ikx. That is, û′[k] = ikû[k].

Differentiation

Let u(x) = |x| for −π ≤ x ≤ π. Use the fact that u′(x) = sgn(x) for 0 < |x| < π to find the
Fourier series of sgn(x).

Example

Solution. Recall that

u(x) =
π

2
+

∞∑
k=−∞
k 6=0

(−1)k − 1

πk2
eikx,

and that we have equality since u ∈ E ′ and u is continuous. The Fourier coefficients are c0 = π/2

and ck =
(−1)k − 1

πk2
for k 6= 0. Noting that u′(x) = −1 if −π < x < 0 and u′(x) = 1

if 0 < x < π, we see that u′(x) = sgn(x) when 0 < |x| < π. Hence sgn(x) has the Fourier
coefficients d0 = 0 and

dk = ikck = ik
(−1)k − 1

πk2
= i

(−1)k − 1

πk
, k 6= 0,

and thus the Fourier series

sgn(x) ∼ i

π

∞∑
k=−∞
k 6=0

(−1)k − 1

k
.

This is true since u′ ∈ E, u(−π) = u(π) and u is continuous. Observe also that it doesn’t matter
that u′(x) 6= sgn(x) at some points. In fact, as long as the set of points where u′(x) 6= sgn(x)
is small enough that it doesn’t affect the integration, we’ll obtain the same Fourier series. This
is true for any Fourier series calculation. However, what the Fourier series converges to might
not be the function at these exception points.
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Theorem. Suppose that u ∈ E. Then û(−x)[k] = û(x)[−k] for k ∈ Z.

Mirroring

Proof: ˆ π

−π
u(t)e−ikt dt = /s = −t/ = −

ˆ −π
π

u(s)eiks ds =

ˆ π

−π
u(s)e−i(−k)s dt = 2πc−k.

Theorem. Suppose that u ∈ E. Then û(x)[k] = û[−k] for k ∈ Z.

Conjugation

Proof: ˆ π

−π
u(t)e−ikt dt =

ˆ π

−π
u(t)eikt dt =

ˆ π

−π
u(t)e−i(−k)t dt = 2πc−k.

Theorem. Suppose that u ∈ E. Then ̂u(x− y)[k] = e−ikyû[k] for k ∈ Z.

Translation

Proof:ˆ π

−π
u(x− y)e−ikx dx =

/
t = x− y

/
=

ˆ π−y

−π−y
u(t)e−ik(t+y) dt = e−iky

ˆ π−y

−π−y
u(t)e−ikt dt

=
/
u is 2π-periodic

/
= e−iky

ˆ π

−π
u(t)e−ikt dt = e−iky2πck.

Let u(x) = |x| for −π ≤ x ≤ π and periodically extend u. Find the Fourier coefficients
for u(x − 1). To what does the Fourier series converge? What is the Fourier series for the
function w(x) = |x− 1|, −π ≤ x ≤ π?

Example

Solution. This is a good example since it shows the dangers of not remembering that we’re
working with periodic extensions outside the domain [−π, π].
Recall that

u(x) =
π

2
+

∞∑
k=−∞
k 6=0

(−1)k − 1

πk2
eikx.

Drawing the function looks like this.

x

y

π 2π 3π−π−2π−3π

π
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It is a periodic function. Now, finding the Fourier coefficients for u(x− 1) is rather easy if we
use the “rule” above:

̂u(x− 1)[k] = e−ikû[k] = e−ik
(−1)k − 1

πk2
, k 6= 0,

and ̂u(x− 1)[0] = e−i·0
π

2
=
π

2
. This means that

u(x− 1) =
π

2
+

∞∑
k=−∞
k 6=0

e−ik
(−1)k − 1

πk2
eikx,

again with equality since u(x − 1) is a continuous function in E ′. Note now though what the
graph looks like.

x

y

π 2π 3π−π−2π−3π

π

It is a shifted copy of the graph of u(x), which was something that we periodically extended.
If we actually want to find the Fourier series for w(x) = |x− 1|, −π ≤ x ≤ π, we have to do a
new calculation and this would look different. Furthermore, the Fourier series will not converge
to |x − 1| at odd multiples of π. Drawing what w(x) actually looks like (and periodically
extend w) makes this clear.

x

y

π 2π 3π−π−2π−3π

π

Doing the calculation, you would find that

w(x) ∼ 1 + π2

2π
+

1

π

∞∑
k=−∞
k 6=0

(−1)k(1− ik)− e−ik

k2
.

When is w(x) equal to it’s Fourier series?

4.6 Gibbs’ Phenomenon

As we saw in the first example of this lecture, the Fourier series of v(x) = x behaves rather
odd at the points x = ±π. We’ve seen this squiggly behavior previously as well. For example
when looking at the Fourier series for sgn(x) we saw that this happened at the origin. However,
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the function x 7→ x2 did not exhibit the oscillatory stuff. Why? The reason is the continuity.
We’ve seen in this lecture that we have uniform convergence on closed intervals under rather
generous conditions that include continuity of the function, and what is common with all the
squiggly sums is that the functions has a jump around which the Fourier partial sums oscillate.
Let’s take a zoomed in look at the partial sums for v(x) = x, that is

Tm(x) =
m∑
k=1

2(−1)k+1

k
sin kx.

x

y

n = 10

n = 25

n = 50

n = 100

n = 500
2.5 3 3.5

1

−1

2

−2

3

−3

What is very interesting in this picture is that the height of the oscillations (at the extremes)
seems to be the same no matter how many terms we use in the partial sum. What changes
is that the oscillations gets more squeezed together around the jump point. Now this is just
a specific example, but it turns out that this holds for all functions with jump discontinuities.
The height of the wobbliness is about 9% of the size of the jump. This is known as Gibbs’
phenomenon.
To see why this holds in this case (which we will use to show the general case below), consider
the sequence {xm} defined by xm = π(1−m−1). Then

Tm(xm) =
m∑
k=1

2(−1)k+1

k
sin

(
kπ

(
1− 1

m

))
=

m∑
k=1

2(−1)k+1

k

(
sin kπ cos

( π
m

)
− cos kπ sin

(
kπ

m

))

=
m∑
k=1

2(−1)2k+2

k
sin

(
kπ

m

)
=

m∑
k=1

2

k
sin

(
kπ

m

)
= 2

m∑
k=1

sin

(
kπ

m

)
kπ

m

· π
m
.
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Next we observe that this is a Riemann sum for the function x 7→ sinx

x
on the interval [0, π],

so since this function is Riemann integrable, letting m→∞ yields that

lim
m→∞

Tm(xm) = 2

ˆ π

0

sinx

x
dx ≥ 1.18π.

Furthermore, certainly v(xm) → π increasingly as m → ∞ and v(π+) − v(π−) = −2π, so the
size of the jump is 2π. Therefore,

lim
m→∞

Tm(xm)− v(xm)

2π
≈ 1.18π − π

2π
= 0.09,

so for m large enough, we have

Tm(xm)− v(xm)

2π
≥ 0.089.

This means that there’s a sequence {xm} for which the difference between Tm(xm) and v(xm)
is about 9% of the the size of the jump!
To summarize, we have a sequence {xm} such that xm < π and xm → π− increasingly and for
which

Tm(xm)− v(xm)

2π
≥ 0.089,

for m large enough. Completely analogously, there exists a sequence {xm} such that xm > π
and xm → π+ decreasingly and for which

Tm(xm)− v(xm)

2π
≤ −0.089

for m large enough.

What’s even more impressive is that this fact holds for all jumps when dealing with functions
from E. The size of the oscillations are always about 9% of the size of the jump. So large
jumps (like at the endpoints) cause a lot of “overshooting” where a signal will look weird (and
the amplitude will overshoot the “expected” signal). To formalize this, we have the following
theorem.

Theorem. Suppose that u ∈ E is continuous on the interval [d − δ, d + δ] except at x = d
and suppose that u′ ∈ E. Let δd = u(d+) − u(d−). Then there exists a sequence xm → d+

such that

lim
m→∞

Sm(xm)− u(xm)

δd
≥ 0.089,

where Sm(x) are the partial Fourier sums of u.

Proof. Using the same idea that was used when proving uniform convergence on sub-intervals,
let us define the function w by

w(x) = u(x) +
δd
2π
v(x+ π − d),
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where v(x) = x for −π < x < π and v(±π) = 0. Then w is continuous on I = [d− δ, d+ δ] and
since w,w′ ∈ E, the Fourier series of w converges uniformly on I. Thus, for any ε > 0, we may
assume that δ > 0 is small enough such that

|Wm(x)− w(x)| < |δd|ε

for m ≥ N (some N ∈ Z) and all x ∈ I, where Wm(x) is the partial Fourier series of w(x).
Since

Wm(x) = Sm(x) +
δd
2π
Tm(x+ π − d), m = 1, 2, 3, . . . ,

it follows that

Sm(x)− u(x)

δd
=
Wm(x)− δd

2π
Tm(x+ π − d)− (w(x)− δd

2π
v(x+ π − d))

δd

=
Wm(x)− w(x)

δd
− Tm(x+ π − d)− v(x+ π − d)

2π
.

By the argument above, there is a sequence xm > d such that

Tm(x+ π − d)− v(x+ π − d)

2π
≤ −0.089,

from which it is clear that

lim
m→∞

Sm(xm)− u(xm)

δd
≥ 0.089,

since ε was arbitrary.

63



4.6. Gibbs’ Phenomenon Chapter 4. Stronger Types of Convergence

64



Chapter 5

Uniqueness, Convergence in Mean,
Completeness

“See you at the party, Richter.”
—Douglas Quaid (Hauser)

5.1 Uniqueness

So we have seen conditions when the Fourier series of a function u converges (and to what).
Another important question is in what sense we can expect the Fourier coefficients to represent
a given function.
Question. Suppose that u, v ∈ E has the Fourier series’

u(x) ∼
∞∑

k=−∞

cke
ikx and v(x) ∼

∞∑
k=−∞

dke
ikx.

If ck = dk for every k ∈ Z, what can we say about u and v?
We know from before that if u, v ∈ E ′ are continuous, then the Fourier series’ converge to u
and v respectively, so if the Fourier coefficients are the same then the functions are equal. This
is not true in general, but we will show that equality holds at points where both u and v are
continuous. To approach this, we need some summation results.

5.1.1 Cesàro Summation

Suppose that a1, a2, a3, . . . is a sequence of numbers and let Sn =
n∑
k=1

ak denote the partial

sums. We define

Sn =
1

n

n∑
l=1

Sl, n = 1, 2, 3, . . . ,

to be the mean value of the first n partial sums of the sequence. So yeah, this is a sum of sums.
If

lim
n→∞

Sn = A

exists (in the usual convergent sense), then we say that the sequence a1, a2, a3, . . . is Cesàro-

summable. Note in particular that if
∞∑
k=1

ak = S is convergent, then A = S, so we obtain the
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same answer when doing Cesàro summation. One can see this by considering the following.
Let Sn → S be convergent and let ε > 0. Then there exists N ∈ Z such that |Sm − S| ≤ ε
if m ≥ N and

∣∣Sn − S∣∣ =

∣∣∣∣∣ 1n
n∑
k=1

(Sk − S)

∣∣∣∣∣ ≤ 1

n

m∑
k=1

|Sk − S|+
1

n

n∑
k=m+1

|Sk − S| ≤
1

n

m∑
k=1

|Sk − S|+ ε→ ε,

as n→∞. Thus Sn → S as n→∞.
So why introduce this type of summing? Well, it makes it possible to assign values to series
that are classically divergent.

Is the sequence 1,−1, 1,−1, 1,−1, . . . Cesàro summable?

Example

Solution. The sequence is obviously not summable in the classical sense (why?). However, the
answer to the question is yes. Consider the partial sums Sn. If n is even, then Sn = 0, and if n
is odd, then Sn = 1. Since

Sn =
1

n

n∑
l=1

Sl,

we obtain that

S1 = 1, S2 =
1

2
, S3 =

2

3
, S4 =

2

4
=

1

2
, S5 =

3

5
, S6 =

3

6
=

1

2
, S7 =

4

7
, S8 =

4

8
=

1

2
,

and so on. Thus S2k = 1/2 and S2k+1 → 1/2 as n→∞, so S = 1/2.
Note: this special series is usually referred to as Grandi’s series.

5.1.2 The Fejér Kernel

Let us look at what happens if we try to perform Cesàro summation for a Fourier series.
Working with the complex Fourier series, we define

Sn(x) =
1

n+ 1

n∑
l=0

Sl(x) =
S0(x) + S1(x) + · · ·+ Sn(x)

n+ 1
,

where

Sl(x) =
l∑

k=−l

cke
ikx, l = 0, 1, 2, . . . ,

and ck are the complex Fourier coefficients. The expression for Sn(x) is basically the Cesàro
mean for the symmetric partial sums. Let us proceed like we did when identifying the Dirichlet
kernel

Sn(x) =
1

n+ 1

n∑
l=0

l∑
k=−l

cke
ikx =

1

n+ 1

n∑
l=0

l∑
k=−l

1

2π

(ˆ π

−π
u(t)e−ikt dt

)
eikx

=
1

2π

ˆ π

−π
u(t)

(
1

n+ 1

n∑
l=0

l∑
k=−l

eik(x−t)

)
dt.
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Isolating the inner parenthesis, we notice that

1

n+ 1

n∑
l=0

l∑
k=−l

eik(x−t) =
1

n+ 1

n∑
k=−n

eik(x−t)
n∑

l=|k|

1 =
n∑

k=−n

n− |k|+ 1

n+ 1
eik(x−t)

=
n∑

k=−n

(
1− |k|

n+ 1

)
eik(x−t),

where we changed the order of summation. To see why this looks the way it does, consider
the figure below (it’s the same type of thinking like we did with multiple integrals). Instead of
summing over the red rectangles we switch and sum over the blue ones instead.

l

k

1 2 3 4 5 6 7

1

−1

2

−2

3

−3

4

−4

5

−5

6

−6

7

−7

Definition. We define the Fejér kernel Fn(x) as

Fn(x) =
1

n+ 1

n∑
l=0

l∑
k=−l

eikx =
n∑

k=−n

(
1− |k|

n+ 1

)
eikx, n = 0, 1, 2, . . .

The Fejér kernel
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n = 1
n = 2
n = 5
n = 10
n = 20

x

y

10

20

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

Obviously Fn(x) is an even 2π-periodic function (similar to the Dirichlet kernel) and we can
write

Sn(x) =
1

2π

ˆ π

−π
u(t)Fn(x− t) dt =

1

2π

ˆ π

−π
u(t+ x)Fn(t) dt.

Notice also that Fn(x) is a sum of Dirichlet kernels Dl(x), giving rise to the representation

Fn(x) =
1

n+ 1

n∑
l=0

sin((2l + 1)x/2)

sin(x/2)
, x 6= 2kπ, k ∈ Z.

Theorem.

(i) Fn(2kπ) = n+ 1, k ∈ Z.

(ii) Fn(x) =
1

n+ 1

(
sin((n+ 1)x/2)

sin(x/2)

)2

, x 6= 2kπ, k ∈ Z.

(iii)

ˆ
T

Fn(x) dx = 2π.

(iv) If 0 < τ < π, then Fn → 0 uniformly on the set [−π,−τ ] ∪ [τ, π] as n→∞.

Properties of the Fejér kernel

Proof. We obtain the first point by direct verification from the definition of Fn. To prove the
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second identity, observe that

(n+ 1) sin(x/2)2Fn(x) = −1

4

n∑
l=0

(
eix/2 − e−ix/2

) (
ei(2l+1)x/2 − e−i(2l+1)x/2

)
= −1

4

n∑
l=0

(
ei(l+1)x − e−ilx − eilx + e−i(l+1)x

)
= −1

4

n∑
l=0

(2 cos(l + 1)x− 2 cos lx) = / telescoping sum /

= −1

2
(cos(n+ 1)x− cos 0) =

1− cos(n+ 1)x

2
= sin2 ((n+ 1)x/2) .

Furthermore, we see that

ˆ π

−π
Fn(x) dx =

n∑
k=−n

(
1− |k|

n+ 1

) ˆ π

−π
eikx dx = 2π,

since eikx is 2π-periodic when k ∈ Z and k 6= 0.
The last point is a little more subtle. Looking at the graphs above, we see that the mass seems
to be centering more and more around the origin, so we might expect something if we avoid
the origin. Indeed, we can see that

‖Fn‖C[τ,π] =
1

n+ 1
max
τ≤x≤π

(
sin((n+ 1)x/2)

sin(x/2)

)2

≤ 1

n+ 1
max
τ≤x≤π

1

sin2(x/2)
≤ 1

n+ 1

1

sin2(τ/2)
→ 0,

so Fn → 0 uniformly on [τ, π]. This also implies uniform convergence for [−π,−τ ] since Fn is
an even function.

Theorem. Suppose that u ∈ E. Then

lim
n→∞

Sn =
u(x+) + u(x−)

2

for x ∈ [−π, π].

Proof. This mirrors the proof of the corresponding theorem for u ∈ E ′ when we used the
Dirichlet kernel. We need to show that

1

2π

ˆ π

0

(u(x+ t)− u(x+))Fn(t) dt+
1

2π

ˆ 0

−π
(u(x+ t)− u(x−))Fn(t) dt→ 0,

as n→∞. This implies that

lim
n→∞

Sn =
u(x+) + u(x−)

2

since
1

2π

ˆ 0

−π
Fn(t) dt =

1

2π

ˆ π

0

Fn(t) dt =
1

2
.
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Let ε > 0. Since u has a right-hand limit at x, there is a δ > 0 such that

0 < t < δ ⇒ |u(x+ t)− u(x+)| < ε.

We exploit this and the uniform convergence of Fn to obtain that∣∣∣∣ 1

2π

ˆ π

0

(u(x+ t)− u(x+))Fn(t) dt

∣∣∣∣ ≤ 1

2π

ˆ δ

0

εFn(t) dt+
1

2π

ˆ π

δ

|u(x+ t)− u(x+)|Fn(t) dt

≤ ε

2

1

π

ˆ π

0

Fn(t) dt+
1

2π

ˆ π

δ

|u(x+ t)− u(x+)|Fn(t) dt

→ ε

2

as n → ∞ since Fn converges uniformly to zero on [δ, π]. The second integral is handled
analogously.

The following corollary is clear since if Sn(x) converges, then Sn(x) converges to the same value.

Corollary. Suppose that u ∈ E. If the Fourier series is convergent at x ∈ [−π, π], then

∞∑
k=−∞

cke
ikx =

u(x+) + u(x−)

2
.

So basically we could say that ”if it converges, it converges correctly” (where it refers to the
Fourier series of something in E).

Corollary. Suppose that u, v ∈ E. If

u(x) ∼
∞∑

k=−∞

cke
ikx and v(x) ∼

∞∑
k=−∞

dke
ikx

and ck = dk for every k ∈ Z, then u(x) = v(x) at every point x ∈ [−π, π] where both u and v
are continuous.

If u is continuous on [−π, π], then we can use the uniform continuity of u in the proof above to
show that Sn(x) converges uniformly (for a fixed ε we can use the same δ for every x).

Corollary. If u ∈ E is continuous and u(−π) = u(π), then Sn(x) converges uniformly to u.

Uniform convergence
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5.2 E, E′ and All That Stuff

So we’ve seen results now that requires different things of the function u to obtain convergence
in different senses. To summarize, some of the things we know are the following.

(i) If u ∈ E, then u has a Fourier series (convergence of which is unknown).

(ii) If u ∈ E, then Sn(x)→ u(x+) + u(x−)

2
.

(iii) If u, v ∈ E and û[k] = v̂[k], k ∈ Z, then u(x) = v(x) whenever u and v are continuous
at x.

(iv) If u ∈ E and D±u(x) exists, then Sn(x)→ u(x+) + u(x−)

2
. If u ∈ E ′, this limit holds for

all x.

(v) If u′ ∈ E, u is continuous and u(−π) = u(π), then Sn(x) converges uniformly to u(x).

(vi) If u′ ∈ E and u is continuous on [a, b] ⊂]−π, π[, then Sn(x) converges uniformly on [a, b].

It is therefore reasonable to question as to whether there are differences between these classes
of functions. First, let’s take a look at the one-sided derivatives.

Theorem. If u′ ∈ E, then D±u(x) = limy→x± u
′(y).

Proof. If u′ ∈ E, then u′ is piecewise continuous. If x is a point of continuity for u′,
then D±u(x) = u′(x) immediately. If x is a “jump”-point for u′, we need to be a bit more
careful. Let h > 0 and recall the mean value theorem: if u is continuous on [x, x + h] and
differentiable on ]x, x+ h[, then there exists a number ξ such that

u(x+ h)− u(x)

h
= u′(ξ), where x < ξ < x+ h.

Letting h→ 0+, we find that

D+u(x) = lim
h→0+

u(x+ h)− u(x)

h
= lim

h→0+
u′(ξ) = u′(x+),

since u′ ∈ E and ξ → x+. The left-hand derivative D−u(x) is handled analogously.

The previous theorem does not hold if we only know that u ∈ E ′. If we don’t know that the
derivative is continuous on ]x−δ, x[ or ]x, x+δ[, then we have to use the definition of D−u(x)
and D+u(x) directly.
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So what does u′ ∈ E mean? We intend for this to mean that the derivative is a piecewise
continuous function. What this entails for u is that the two-sided derivative might not exist
at some points, but we still write u′ ∈ E. The reason for this is that we don’t care what
actually happens at individual points, but rather the limiting behavior of the function when
we approach the point.
If u ∈ E ′, then we only know that the function has one-sided derivatives at every point. This
is not sufficient for u′ to be piecewise continuous. In fact u′ might be very discontinuous.

The difference between u′ ∈ E and u ∈ E′

5.2.1 Some Examples

Let’s consider some examples that show the differences between the conditions. The black
graphs depict the function and the red graphs the derivative.

Let u(x) = |x| for −π ≤ x ≤ π and extend periodically. Then u ∈ E is continuous and u ∈ E ′.
Moreover, u′ ∈ E.

Example

Clearly u′(x) = −1 if x < 0 and u′(x) = 1 if x > 0. At x = 0, u′(0) does not exist.
However, D±u(0) = ±1.

x

y

π−π

2

−2

Let u(x) =
√
|x| for −π ≤ x ≤ π and extend periodically. Then u ∈ E is continuous

but u /∈ E ′.

Example

For −π < x < 0, we find that u′(x) = −|x|−1/2/2 and D−u(0) doesn’t exist (would be −∞).
However, D+u(−π) = −|π|1/2/2. Analogously, for 0 < x < π, we find that u′(x) = |x|−1/2/2
and D+u(0) doesn’t exist (would be ∞). However, D−u(π) = |π|1/2/2.
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x

y

π−π

2

−2

Let u(x) = x sin
1

x
for −π ≤ x ≤ π and extend periodically. Then u ∈ E is continuous

but u /∈ E ′. In fact, D±u(0) does not even exist if ±∞ is allowed (this is worse than
√
|x|).

Example

For −π ≤ x ≤ π and x 6= 0, it is clear that u′(x) = sin
1

x
− 1

x
cos

1

x
, but D±u(0) does not exist

(not even if we allow ±∞ as possibilities). In the graph below, the scale of the function is ten
times the size of the derivative.

x

y

π−π

1

−1

Let u(x) = x2 sin
1

x
for −π ≤ x < 0 and 0 < x < π. Put u(0) = 0 and extend u periodi-

cally. Then u′ exists everywhere in ]− π, π[ and D±u(−π) and D±u(π) exists. However, the
derivative u′ is discontinuous at x = 0. Moreover, u′ /∈ E.

Example

For −π < x < π and x 6= 0, it is clear that u′(x) = 2x sin
1

x
− cos

1

x
. For x = 0, we find that

u′(0) = lim
h→0

u(h)− u(0)

h
= lim

h→0

1

h
h2 sin

1

h
= 0 = lim

h→0
h sin

1

h
= 0,

so u′(0) exists. Clearly it is not true that u′(x) → 0 as x → 0±, so by the theorem we proved
earlier it is impossible that u′ ∈ E. More directly, consider the limit of u′(x) as x→ 0±. Neither
limit exists, so u′ /∈ E.
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x

y

π−π

1

−1

The Weierstrass function W (x) (look back at the section with the M-test in lecture 3) is a
continuous function, so W ∈ E. However, this function is nowhere differentiable going so far
that |D±W (x)| =∞ at every point. Clearly W /∈ E ′.

Example

5.2.2 How Discontinuous Can a Derivative Be?

So the previous examples had problems at a single point (and maybe at the endpoints). Obvi-
ously we can construct something that has problems at any each point of any finite set (which
would make the function look quite horrible), but from a mathematical perspective that’s usu-
ally not that bad. Could we have problems at an infinite set of points?
Let’s recall a famous theorem by Darboux, claiming that the derivative of a differentiable
function has the intermediate value property.

Theorem. Suppose that u is differentiable on [a, b] and that u′(a) < u′(b). If λ is a number
such that u′(a) < λ < u′(b), then there exists a point c ∈]a, b[ such that u′(c) = λ.

Darboux’s theorem

Proof. We want to prove that there exists some c ∈]a, b[ such that u′(c) − λ = 0. Let’s
define U(x) = u(x)− λx so that U ′(c) = u′(c)− λ. Then U ′(a) = u′(a)− λ < 0. Hence there’s
some point x0 > a such that U(x0) < U(a). Similarly, since U ′(b) = u′(b)−λ > 0, there’s some
point x1 < b such that U(x1) < U(b).
What this means, is that the minimum of U on [a, b] is not attained at the endpoints. With U
being a continuous function and [a, b] being compact, we do however know that the minimum
is attained. This ensures the existence of a point c ∈]a, b[ such that U(c) is an extreme value
and since U is differentiable, this proves that U ′(c) = 0.

So what’s the use of this result? For one thing, we can show that certain functions can’t be
the derivative of something else. Indeed, as an example consider the function u(x) = 1 if x is
irrational and u(x) = 0 if x is rational. This is a severely discontinuous function. Assuming
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that u is the derivative of some function U , it would follow from Darboux’s theorem that u has
the intermediate value property. This is obviously false since we can choose any number λ ∈]0, 1[
where we can’t find any c such that u(c) = λ.

So in other words, if a function is differentiable, then the derivative can’t be as bad as this.
However, there are differentiable functions where the set of of discontinuities of the derivative
is uncountable so it’s still pretty bad. In fact, there are functions whose derivative is so bad
that you can’t integrate the derivative with the Riemann integral.

5.3 The ON-system {eikx}k∈Z is closed in E

We will now prove that the ON-system {eikx}k∈Z is closed in E, meaning that we need to show
that for every u ∈ E, there is a sequence of constants ck ∈ C, k = 0, 1, 2, . . . such that

lim
n→∞

∥∥∥∥∥u(x)−
n∑

k=−n

cke
ikx

∥∥∥∥∥
2

= lim
n→∞

(
1

2π

ˆ π

−π

∣∣∣u(x)−
n∑

k=−n

cke
ikx
∣∣∣2 dx)1/2

= 0. (5.1)

Note that this result will imply that the Fourier series of u ∈ E will converge to u in the sense
of the norm we use on E (the L2-norm). This is sometimes called convergence in mean.

To obtain this result, we need a sequence of approximation results rather typical for (hard)
analysis. Recalling from the previous section that we can approximate any continuous function
on [−π, π] uniformly by the trigonometric polynomial that is its Fourier series, we need to first
approximate u ∈ E with something continuous.

The procedure will be as follows. We fix some u ∈ E. Next we choose a piecewise constant
function h such that

‖u− h‖2 <
ε

3
.

Next we approximate this piecewise constant function h by a piecewise linear1 continuous
function f (satisfying f(−π) = f(π)) such that

‖h− f‖2 <
ε

3
.

Now, since f is continuous and f ′ ∈ E, we know that the Fourier series of f converges to f
uniformly for every x ∈ [−π, π]. This means that we can choose N so that∥∥∥∥∥f(x)−

n∑
k=−n

cke
ikx

∥∥∥∥∥
2

<
ε

3
, for n > N,

if ck are the Fourier coefficients of f . Finally, by the triangle inequality we have now obtained
that∥∥∥∥∥u(x)−

n∑
k=−n

cke
ikx

∥∥∥∥∥
2

≤ ‖u− h‖2 + ‖h− f‖2 +

∥∥∥∥∥f(x)−
n∑

k=−n

cke
ikx

∥∥∥∥∥
2

<
ε

3
+
ε

3
+
ε

3
= ε,

when n ≥ N , which is precisely what (5.1) means.

1Piecewise linear means that the function is of the form y = kx+m on each ”piece.”
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5.3.1 Approximations...

Let’s take a closer look at these approximations.
First, since u ∈ E it is Riemann integrable (see TATA41) and the following must hold. For
every ε > 0, there is a partition of [−π, π],

x0 = −π < x1 < x2 < · · · < xn = π,

and numbers ξi ∈ [xi, xi+1], i = 0, 1, . . . , n− 1, such that

1

2π

ˆ π

−π
|u(x)− h(x)|2 dx < ε2

4
,

where we define the function h(x) to be equal to dk = u(ξk) if xk < x ≤ xk+1. Note that h is a
piecewise constant function that approximates u. See the blue graph below.
We make sure to include the points where u is discontinuous (of which there are a finite number)
in the set {x0, x1, . . . , xn}, so that u is continuous on each interval [xi, xi+1] after possible
redefinition at the endpoints (remember that the right- and lefthand limits of u exists if u ∈ E).

x

y

x0 x1 x2 x3 x4 x5 x6 x7 x8

To see why this is possible, note that the restriction of u to intervals [ai, ai+1] (after possible
redefinition at a finite number of points ai) is uniformly continuous on each [ai, ai+1]. Thus, for
any ε > 0, there is a δi > 0 such that

x, y ∈ [ai, ai+1] : |x− y| < δi ⇒ |u(x)− u(y)| < ε

3
.

Let δ = min{δi}. Clearly δ > 0, so it is possible to choose a partition {xi}ni=0 of [−π, π] such
that |xi+1−xi| < δ, i = 0, 1, 2, . . . , n− 1, and each point ai can be found in the set {xi}ni=0. By
the uniform continuity on each [xi, xi+1], it is clear that

|u(x)− h(x)|2 = |u(x)− dk|2 ≤
ε2

9
, xi < x < xi+1,

76



Chapter 5. Uniqueness, Convergence in Mean, Completeness 5.3. A Closed ON-system in E

since dk = u(ξk) for some ξk such that xk < ξk ≤ xk+1. The inequality might not hold at the
end-points, but this does not matter for the integral. This implies that

ˆ xi+1

xi

|u(x)− h(x)|2 dx ≤ ε2

9
|xi+1 − xi|, i = 0, 1, 2, . . . , n− 1,

so

‖u− h‖2
2 =

1

2π

ˆ π

−π
|u(x)− h(x)|2 dx =

1

2π

(
n−1∑
k=0

ˆ xi+1

xi

|u(x)− h(x)|2 dx

)

≤ 1

2π

(
n−1∑
k=0

ε2

9
|xi+1 − xi|

)
=
ε2

9
.

Next step is to approximate h by a continuous function f such that f(−π) = f(π). To this

end, choose a δ > 0 such that δ <
πε2

36M2n
(yeah.. we’ll get to that), where M is some number

such that |h(x)| ≤ M for all x. Define f such that f(x) = dk when xk + δ ≤ x ≤ xk+1 − δ
and between these intervals, a straight line that connects the y-values dk with dk+1. At the
endpoints, we connect d0 and dn with the y-value that is the mean value of u(−π) and u(π).
See the red graph below.

x

y

x0 x1 x2 x3 x4 x5 x6 x7 x8

The function f is continuous on [−π, π] and f(−π) = f(π). We extend f periodically to R.
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Since f = h on large chunks of [−π, π], we now note that

‖f − h‖2
2 =

1

2π

ˆ π

−π
|f(x)− h(x)|2 dx

=
1

2π

(ˆ −π+δ

−π
|f(x)− h(x)|2 dx+

n−1∑
k=1

ˆ xk+δ

xk−δ
|f(x)− h(x)|2 dx+

ˆ π

π−δ
|f(x)− h(x)|2 dx

)

≤ 1

2π

(
4M2(δ + (n− 1) · 2δ + δ)

)
=

4M2nδ

π

≤ ε2

9
,

where we used the rough estimate |f(x)−h(x)| ≤ 2M which holds if |f(x)| ≤M (which implies
that |h(x)| ≤M as well). Note that f ′ ∈ E.

5.4 Parseval’s Formula

Recall from Lecture 2 that Parsevals’s identity holds for closed ON systems (and we just proved
this for E):

1

2π

ˆ π

−π
|u(x)|2 dx =

∞∑
k=−∞

|ck|2,

where

ck =
1

2π

ˆ π

−π
u(x)e−ikx dx, k ∈ Z.

Furthermore, this could be generalized as

1

2π

ˆ π

−π
u(x)v(x) dx =

∞∑
k=−∞

ckdk,

where

ck =
1

2π

ˆ π

−π
u(x)e−ikx dx and dk =

1

2π

ˆ π

−π
v(x)e−ikx dx, k ∈ Z.

Calculate
∞∑
k=1

1

k2
.

Example

Solution. Note that u(x) = x, −π ≤ x < π, has the Fourier coefficients ck = i(−1)k/k
for k 6= 0 and c0 = 0 (show this). Hence

∞∑
k=−∞

|ck|2 = 2
∞∑
k=1

1

k2

and by Parseval’s identity this series is equal to

1

2π

ˆ π

−π
|u(x)|2 dx =

1

2π

ˆ π

−π
x2 dx =

2π3

6π
=
π2

3
,
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so
∞∑
k=1

1

k2
=
π2

6
.

This is one way of proving this famous formula.
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Chapter 6

The Fourier Transform

“Crom! Grant me revenge. And if you’re not listening, to hell with you!”
—Conan

6.1 The Fourier Transform

Formally, we can consider the Fourier transform of a function u : R→ C given by

F u(ω) =

ˆ ∞
−∞

u(x)e−iωx dx, ω ∈ R,

when this integral exists. When is this the case? Well, if u ∈ L1(R) then this integral will be
absolutely integrable since |u(x)e−iωx| ≤ |u(x)| (for ω real) so

| F u(ω)| ≤
ˆ ∞
−∞
|u(x)| dx <∞.

Note that this bound is uniform in ω, so we have actually proved that

‖F u‖∞ ≤ ‖u‖L1(R),

meaning that the Fourier transform maps functions from L1(R) into L∞(R). This space will
be to hard for us to handle properly though, so let’s consider piecewise continuous functions
similarly with how we handled Fourier series. In some cases you’ll see that ω = 2πf is used.
This is to obtain results in terms of frequency (not angular frequency) with the unit Hertz.
This won’t happen very often in this course, but is quite common in signal processing.

Definition. We define the space G(R) (or just G if the domain is clear from the context)
to consist of all piecewise continuous functions u : R → C that are absolutely integrable. A
function is called piecewise continuous on R if there is a finite number of exception points in
each finite interval [a, b] (meaning that u ∈ E[a, b]).

The space G(R)
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Note that this means that a function in G might have an infinite number of discontinuity points
(but still countably many). The simplest example is probably the integer function u(x) = [x]
that maps a real value x to its integer part.

When dealing with Fourier transforms, there’s some slight variations in the notation. The most
common ways to denote the Fourier transform of u : R→ C are

U(ω) = û(ω) = F u(ω).

Choose which one you prefer and try to stay consistent (I probably won’t..). Note that there
are certain instances where a certain notation makes things easier to read, so some variation is
alright.

When using F u(ω), observe that this means that the function F u has the argument ω. If we
wish to be very careful, we sometimes write F(u(x))(ω) to indicate that u is a function of x
and the Fourier transform of u is a function of ω, even if this notation is slightly incorrect (u
is the function and u(x) is the functions value at x). We might even write (F(u(x)))(ω) if it
helps make something clear, but clumsier notation is most often not the best idea.

There are several, different competing “versions” of the Fourier transform that differs by a
constant. In the book the Fourier transform is given by

1

2π

ˆ ∞
−∞

u(x)e−iωx dx

and in other material you might find that the Fourier transform is defined by

1√
2π

ˆ ∞
−∞

u(x)e−iωx dx.

The theory will look the same, but obviously the Fourier transforms of specific functions will
have different constants attached. Be very careful when reading tables! This problem will
also return next lecture when we discuss the inverse Fourier transform.

Normalizing constants

6.2 Time/Space and Frequency; The Spectrum

We often think of the function u : R → C as a function of time or space, meaning that we
have values at certain times or at certain points. Taking the Fourier transform of u produces a
function U : R→ C, and we consider U(ω) as a function of angular frequency ω. If we plot the
magnitude of U (that is we plot the absolute value), we typically obtain something like this.
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f

Abs

318 637 955 1273 1592 1910 2228 2546 2865

Why this example? Why these numbers? Why does the graph look symmetric around the y-
axis? So many questions. The connection between the angular frequency and regular frequency
is given by

ω = 2πf,

where f is the regular frequency (measured in Hertz). For an audio signal, we typically consider
frequencies below 22 kHz so that’s the reason for those numbers. Furthermore, A real-valued
function always has a symmetric spectrum. So that’s the reason for the symmetry. We’ll prove
that later on (it’s not that difficult). For this reason we usually only plot half of the magnitude
spectrum in the case when the signal is real.

6.3 Examples

A lot of calculations to derive the Fourier transforms of given functions are rather difficult in
that they involve techniques that aren’t available to us (like residue calculus from complex
analysis). Other problems arrive from our choice of domain for the Fourier transform, that
is, the space G(R). Not only are we requiring functions to be piecewise continuous, but also
absolutely integrable. For example, could we assign a Fourier transform to a non-zero constant?
We could, but that basically requires distribution theory (and the answer is basically the Dirac
“function”). So what this means is that we’re going to see tables where Fourier transforms are
listed that might not be completely in line with what we’re able to prove, but we will use these
anyway if needed. Be aware though that we have not covered the necessary theory in that case.
So let’s consider some examples we actually can derive without any issues.

Show that the Fourier transform of u(x) = e−|x|, x ∈ R, is given by U(ω) =
2

1 + ω2
.

Example

Solution. We note that u ∈ G(R) and
ˆ ∞
−∞

e−|x|e−iωx dx =

ˆ 0

−∞
ex(1−iω) dx+

ˆ ∞
0

e−x(1+iω) dx =

[
ex(1−iω)

1− iω

]0

−∞
+

[
−e
−x(1+iω)

1 + iω

]∞
0

=
1

1− iω
+

1

1 + iω
=

1 + iω + (1− iω)

(1 + iω)(1− iω)
=

2

1 + ω2
.
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We also note the following partial result from the previous calculation.

The Fourier transform of u(x) = e−x, x ≥ 0, is given by U(ω) =
1

1 + iω
.

Example

We see that situations where functions are defined from a certain point onward, the following
function can be helpful in writing down such expressions.

Definition. The Heaviside function H is defined by H(x) = 0 if x < 0 and H(x) = 1
if x ≥ 0.

The Heaviside Function

Definition. We define the sinc-function by

sinc(x) =
sinx

x
, x 6= 0,

and sinc(0) = 1 (why?).

The sinc function

The sinc-function is a sinusoid that decays as 1/x. As we shall see, it is also an important
function when dealing with Fourier transforms.

x

y

2−2 4−4 6−6 8−8 10−10 12−12 14−14 16−16 18−18

Show that the Fourier transform of u(x) = 1, x ∈ [−1, 1], and u(x) = 0 elsewhere, is given
by U(ω) = 2 sincω.

Example
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Solution. We note that u ∈ G(R) and that

ˆ ∞
−∞

u(x)e−iωx dx =

ˆ 1

−1

e−iωx dx =

[
e−iωx

−iω

]1

−1

=
eiω − e−iω

iω
= 2 sincω, ω 6= 0.

For ω = 0, we find that F u(0) = 2. This is 2 sinc(0) so the Fourier transform of the “box” is
continuous also at the origin. We will show that the continuity of the Fourier transform is true
for any u ∈ G(R).
Note also the contrast between the graphs of the function and its Fourier transform. Indeed,
the Fourier transform (while decaying) is oscillating around the ω-axis all the way to infinity,
whereas the function u is extremely limited with respect to x (it’s equal to zero outside [−1, 1]).
This is an intrinsic property of the Fourier transform. We can’t have something that’s both
limited in x and ω at the same time. You’re going to see this phenomenon in a lot of applied
settings ranging from quantum mechanics (hello Heisenberg) to telecommunication.

6.4 Properties of the Fourier Transform

In the previous examples, we saw that a real valued function might give both real and complex
valued Fourier transforms, but in the case when the function was symmetric we obtained a
real valued transform. Is this true in general? Or was there something else that happened in
these examples that produced the result? Or was it just coincidence? These types of symmetry
questions and general properties of the Fourier transform are important and also what enables
us to develop useful concise tables that work together with certain rules. So let’s take a look
at the properties and rules of the Fourier transform.

Theorem. For u ∈ G, the Fourier transform F u is uniformly continuous on R.

Proof. So... there’s an easy way of doing this by means of the Lebesgue dominated convergence
theorem. However, this is slightly outside the course, so let’s try something else. Let U(ω) be
the Fourier transform of u ∈ G and let h be a small real number. Then

|U(ω + h)− U(ω)| =
∣∣∣∣ˆ ∞
−∞

u(x)
(
e−i(ω+h)x − e−iωx

)
dx

∣∣∣∣ ≤ ˆ ∞
−∞
|u(x)|

∣∣e−i(ω+h)x − e−iωx
∣∣ dx.

Now, we need to do something with the difference of complex exponentials. A rough estimate
is given by ∣∣e−i(ω+h)x − e−iωx

∣∣ ≤ ∣∣e−i(ω+h)x
∣∣+
∣∣e−iωx∣∣ = 2

so at least it is bounded. However, clearly the difference also goes to zero as h→ 0, so we can
do better. Indeed, let α, β ∈ R. Then∣∣eiα − eiβ∣∣2 = |cosα + i sinα− cos β − i sin β|2 = (cosα− cos β)2 + (sinα− sin β)2

= cos2 α + sin2 α + cos2 β + sin2 β − 2 (cosα cos β + sinα sin β)

= 2(1− cos(α− β)) = 4 sin2

(
α− β

2

)
≤ 4

(
α− β

2

)2

= (α− β)2,

since | sinx| ≤ |x| for x ∈ R. This implies that∣∣e−i(ω+h)x − e−iωx
∣∣ ≤ | − (ω + h)x+ ωx| = |h||x|.

85



6.4. Properties of the Fourier Transform Chapter 6. The Fourier Transform

Let ε > 0. We will prove that there exists δ > 0 such that

|h| < δ ⇒ |U(ω + h)− U(ω)| < ε for every ω ∈ R. (6.1)

Since u is absolutely integrable, there exists some number R > 0 such thatˆ
|x|>R

|u(x)| dx < ε

4
.

Thenˆ ∞
−∞
|u(x)|

∣∣e−i(ω+h)x − e−iωx
∣∣ dx =

ˆ
|x|>R

|u(x)|
∣∣e−i(ω+h)x − e−iωx

∣∣ dx
+

ˆ R

−R
|u(x)|

∣∣e−i(ω+h)x − e−iωx
∣∣ dx

≤ 2

ˆ
|x|>R

|u(x)| dx+

ˆ R

−R
|u(x)||h||x| dx

≤ 2
ε

4
+ |h|R

ˆ R

−R
|u(x)| dx ≤ ε

2
+ |h|R

ˆ ∞
−∞
|u(x)| dx,

so we can choose δ =
1

2R‖u‖L1

to obtain (6.1).

Theorem. For u ∈ G we have F u(ω)→ 0 as |w| → ∞.

The Riemann-Lebesgue “Lemma”

Proof. Let ε > 0. We prove that there exists N > 0 such that

|ω| > N ⇒ |U(ω)| < ε. (6.2)

Since u is absolutely integrable, there exists M > 0 such thatˆ
|x|>M

|u(x)| dx < ε

3
. (6.3)

Since u is Riemann integrable on [−M,M ], there exists a step function h such that

ˆ M

−M
|u(x)− h(x)| dx < ε

3
(6.4)

(we could take the lower sum for instance so that |u(x) − h(x)| = u(x) − h(x)). Let the step
function be equal to the constant ck when xk < x < xk+1, k = 0, 1, . . . ,m− 1, where

−M = x0 < x1 < x2 < · · · < xm = M

is a suitable partition of [−M,M ]. Observe now that for ω 6= 0,∣∣∣∣ˆ xk+1

xk

h(x)e−iωx dx

∣∣∣∣ =

∣∣∣∣ˆ xk+1

xk

cke
−iωx dx

∣∣∣∣ =

∣∣∣∣∣ck
[
e−iωx

−iω

]x=xk+1

x=xk

∣∣∣∣∣ ≤ |ck||ω| ∣∣e−iωxk+1 − e−iωxk
∣∣

≤ 2|ck|
|ω|

.
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Hence ∣∣∣∣ˆ M

−M
h(x)e−iωx dx

∣∣∣∣ ≤ m−1∑
k=0

∣∣∣∣ˆ xk+1

xk

h(x)e−iωx dx

∣∣∣∣ ≤ 2

|ω|

m−1∑
k=0

|ck|.

Let N > 6ε−1

m−1∑
k=0

|ck|. Then, if |w| > N , we have

∣∣∣∣ˆ M

−M
h(x)e−iωx dx

∣∣∣∣ < ε

3
. (6.5)

By equations (6.3), (6.4) and (6.5), we obtain

|U(ω)| =
∣∣∣∣ˆ ∞
−∞

u(x)e−iωx dx

∣∣∣∣
≤
ˆ
|x|>M

|u(x)| dx+

∣∣∣∣ˆ M

−M
(u(x)− h(x))e−iωx dx

∣∣∣∣+

∣∣∣∣ˆ M

−M
h(x)e−iωx dx

∣∣∣∣
<
ε

3
+

ˆ M

−M
|u(x)− h(x)| dx+

ε

3
< ε,

which is (6.2).

This result also implies the following useful result.

Corollary. If u ∈ E[a, b] (piecewise continuous on [a, b] and integrable), then

lim
M→±∞

ˆ b

a

u(x) sin(Mx) = 0 and lim
M→±∞

ˆ b

a

u(x) cos(Mx) = 0.

6.5 Rules for the Fourier Transform

Suppose throughout that u, v ∈ G(R). Additional assumptions will be stated in the theorems.

Theorem. If a, b are constants, then F(au+ bv) = aF u+ bF v.

Linearity

Proof. This follows from the linearity of the integral defining the Fourier transform.

Theorem. If a 6= 0, then F(u(ax))(ω) =
1

|a|
F(u(x))

(ω
a

)
.

Scaling
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Proof. First, assume that a > 0. Observing that

F(u(ax))(ω) =

ˆ ∞
−∞

u(ax)e−iωx dx = / y = ax / =

ˆ ∞
−∞

u(y)e−iωy/a
dy

a

=
1

a

ˆ ∞
−∞

u(y)e−i(ω/a)y dy =
1

a
F u

(ω
a

)
.

If a < 0, then we need to note that when doing the substitution, the limits will exchange places
(so the integral goes from +∞ to −∞). Changing this back changes the sign of the integral,
so we obtain that

F(u(ax))(ω) = −1

a
F u

(ω
a

)
=

1

|a|
F u

(ω
a

)
.

Note the corollary we obtain when a = −1.

Corollary. F(u(−x))(ω) = F(u(x))(−ω).

Sign change

However, note also the following property.

Theorem. If u is real-valued, then F u(−ω) = F u(ω).

Real symmetry

Proof. Since u(x) ∈ R, we have

F u(−ω) =

ˆ ∞
−∞

u(x)e−i(−ω)x dx =

ˆ ∞
−∞

u(x)eiωx dx =

ˆ ∞
−∞

u(x)e−iωx dx

=

ˆ ∞
−∞

u(x)e−iωx dx = F u(ω).

Note that this implies that if u is real valued and U(ω) = F u(ω), then

|U(−ω)| = |U(ω)|, ReU(−ω) = Re(ω), and ImU(−ω) = − ImU(ω).

This means that there’s symmetry around the imaginary axis for the spectrum of u.

Theorem. Suppose that a ∈ R is constant. Then F(u(x− a))(ω) = e−iωa(F(u(x)))(ω).

Translation

Proof. A simple substitution shows that

F(u(x− a))(ω) =

ˆ ∞
−∞

u(x− a)e−iωx dx = / y = x− a / =

ˆ ∞
−∞

u(y)e−iω(y+a) dy

= e−iωa
ˆ ∞
−∞

u(y)e−iωy dy = e−iωaF u(ω).
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Theorem. Suppose that a ∈ R is constant. Then F(eiaxu(x))(ω) = (F(u(x)))(ω − a).

Phase shift

Proof. We note that

F(eiaxu(x))(ω) =

ˆ ∞
−∞

u(x)eiaxe−iωx dx =

ˆ ∞
−∞

u(x)e−i(ω−a)x dx = F u(ω − a),

which completes the proof.

ω

Abs

a

A

Euler’s formulas implies the following variation (that’s useful in telecommunication).

Theorem. Suppose that c ∈ R is constant. Then

F
(
u(x) cos cx

)
(ω) =

F(u(x))(ω − c) + F(u(x))(ω + c)

2
and

F
(
u(x) sin cx

)
(ω) =

F(u(x))(ω − c)−F(u(x))(ω + c)

2i
.

Modulation

ω

Abs

A/2

c−c

Notice that this means that we might get an overlap which might cause distortion in applications
if the shift c is too small (if we just want a“copy”of the spectrum shifted to a higher frequency).
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Theorem.
F(u(x))(ω) = F(u(x))(−ω)

Complex conjugation

Proof. Clearly

F(u(x))(ω) =

ˆ ∞
−∞

u(x)e−iωx dx =

ˆ ∞
−∞

u(x)e−i(−ω)x dx =

ˆ ∞
−∞

u(x)e−i(−ω)x dx = F u(−ω).

6.5.1 Differentiation

So let’s move on to a very useful property of the Fourier transform: derivatives in one domain
corresponds to multiplication by ω (or x) in the other domain. Formally, the proof is simple
enough, but we need to exchange to order of integration and differentiation which is a bit prob-
lematic. So we need some preliminary results for how to handle expressions of the form xnu(x).
But first, let’s investigate what the Fourier transform of u′ is.

Theorem. Let u ∈ G(R) be differentiable and let u′ ∈ G(R). Then F(u′)(ω) = iωF u(ω).

Proof. First, since u is continuous, we have

u(x)− u(0) =

ˆ x

0

u′(t) dt.

Since u′ ∈ G(R), we know that u′ is absolutely integrable, and therefore the limit

lim
x→∞

u(x) = u(0) +

ˆ ∞
0

u′(t) dt

exists. Furthermore, since u is also absolutely integrable and continuous, the limit above must
be zero (if not then u, being continuous and having a limit at∞, can’t be absolutely integrable).
Similarly we must have u(x)→ 0 as x→ −∞. Using integration by parts, we see that

ˆ M

−M
u′(x)e−iωx dx =

/
I.B.P.

/
= u(M)e−iωM − u(−M)eiωM + iω

ˆ M

−M
u(x)e−iωx dx

→ iω

ˆ ∞
−∞

u(x)e−iωx dx = iωF u(ω), as M →∞,

since u(x)→ 0 as x→ ±∞.

Theorem. Let u ∈ G(R) be such that xu(x) ∈ G(R). Then F(xu(x))(ω) = i
d

dω
F(u(x))(ω).
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“Proof.” Formally, the proof is rather simple. Indeed, just observing that

U ′(ω) =
d

dω

ˆ ∞
−∞

u(x)e−iωx dx =

ˆ ∞
−∞

u(x)
d

dω
e−iωx dx =

ˆ ∞
−∞
−ixu(x)e−iωx dx

= −iF(xu(x))(ω),

seems to indicate that the statement is true. However, the operation of moving the differential
operator inside the integral is far from trivial; see the last section of this lecture.

Find the Fourier transform of the gaussian e−x
2
.

Example

Solution. One way of approaching this is by observing that both e−x
2

and xe−x
2

belong
to G(R), so if u(x) = e−x

2
and U(ω) = F u(ω), then

U ′(ω) = −iF(xe−x
2

)(ω) = −i
ˆ ∞
−∞

xe−x
2

e−iωx dx

=
/

I.B.P.
/

= −i
[
−1

2
e−x

2

e−iωx
]∞
−∞
− i
ˆ ∞
−∞

−iω
2

e−x
2

e−iωx dx = −ω
2
U(ω).

So U must satisfy

U ′(ω) +
ω

2
U(ω) = 0 ⇔ d

dω

(
eω

2/4U(ω)
)

= 0 ⇔ U(ω) = Ce−ω
2/4.

However, we can only have one Fourier transform so we need to find a value for C. It is clear
that

U(0) =

ˆ ∞
−∞

e−x
2

dx.

This is a standard integral and one can for example find its value through the following calcu-
lation: (ˆ ∞

−∞
e−x

2

dx

)2

=

(ˆ ∞
−∞

e−x
2

dx

)(ˆ ∞
−∞

e−y
2

dy

)
=

ˆ ˆ
R2

e−(x2+y2) dx dy

=

ˆ ∞
0

ˆ 2π

0

re−r
2

dθ dr = 2π

[
−1

2
e−r

2/2

]∞
0

= π.

Therefore C = U(0) =
√
π and we have shown that

F
(
e−x

2
)

(ω) =
√
πe−ω

2/4.

Find a solution to

u′′(x) + 3u′(x) + 2u(x) =

{
e2x, x < 0,

e−x, x ≥ 0.

Example
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6.5. Rules for the Fourier Transform Chapter 6. The Fourier Transform

Solution. First, note that if a > 0, then

F(eaxH(−x))(ω) =

ˆ 0

−∞
eaxe−iωx dx =

[
e(a−iω)x

a− iω

]0

−∞
=

1

a− iω
.

Similarly, if a > 0, then

F(e−axH(x))(ω) =

ˆ ∞
0

e−axe−iωx dx =

[
−e
−(a+iω)x

a+ iω

]∞
0

=
1

a+ iω
.

Since we can express the right-hand side as e2xH(−x) + e−xH(x), where H is the Heaviside
function, we obtain (assuming that u ∈ G(R) and noting that the right-hand side is also
in G(R)),

(iω)2U(ω)+3iωU(ω)+2U(ω) =
1

2− iω
+

1

1 + iω
⇔ ((iω)2+3iω+2)U(ω) =

1

2− iω
+

1

1 + iω
.

The right-hand side is
1

2− iω
+

1

1 + iω
=

3

(2− iω)(1 + iω)

and letting s = iω, we see (from the lefthand side) that s2 + 3s + 2 = (s + 1)(s + 2), so we’re
looking for whatever has the transform

U(ω) =
3

(1 + iω)2(2 + iω)(2− iω)
=
/

partial fractions
/

=
−2/3

1 + iω
+

1

(1 + iω)2
+

3/4

2 + iω
+

1/12

2− iω
.

From a table (or the calculation above) we know that

F(e−axH(X)) =
1

a+ iω
,

so the first and third term yields

−2

3
e−xH(x) +

3

4
e−2xH(x).

Similarly, the last term yields
1

12
e2xH(−x).

To attack the remaining term, observe that

d

dω

(
1

1 + iω

)
= −i 1

(1 + iω)2
,

so since F(xu(x))(ω) = iU ′(ω) (assuming that u is nice enough),

F(xe−xH(x))(ω) = −i2 1

(1 + iω)2
=

1

(1 + iω)2
.

So we see that (
x− 2

3

)
e−xH(x) +

3

4
e−2xH(x) +

1

12
e2xH(−x)

has the Fourier transform U(ω). So we suggest that

u(x) =


1

12
e2x, x < 0,

3

4
e−2x +

(
x− 2

3

)
e−x, x ≥ 0,

is a solution to the differential equation. Directly verifying this proves the statement (something
that should be done at this point). If we knew some uniqueness results, we could argue why
this is the solution.
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6.6 Principal Values and Integration

Definition. The principal value of an integral

ˆ ∞
−∞

u(x) dx is defined as

P.V.

ˆ ∞
−∞

u(x) dx = lim
R→∞

ˆ R

−R
u(x) dx

whenever this limit exists.

If u is absolutely integrable, then

P.V.

ˆ ∞
−∞

u(x) dx =

ˆ ∞
−∞

u(x) dx.

In other words,

lim
R→∞

ˆ R

−R
u(x) dx = lim

m,M→∞

ˆ M

−m
u(x) dx

is finite if absolutely convergent (this was the definition in TATA42). This is clear since∣∣∣∣ˆ ∞
−∞

u(x) dx−
ˆ R

−R
u(x) dx

∣∣∣∣ =

∣∣∣∣ˆ −R
−∞

u(x) dx+

ˆ ∞
R

u(x) dx

∣∣∣∣
≤
ˆ −R
−∞
|u(x)| dx+

ˆ ∞
R

|u(x)| dx→ 0,

as R → ∞ since u is absolutely integrable, which implies that both integrals in the righthand
side tend to zero (independently of each other).
Note that in the case that the integrals are absolutely integrable, the principal value integral
will be equal to the integral with separate limits towards the infinities. So for us, they will
produce the same value.
Now, let f : R2 → C be a function of two real variables.

Definition. We say that F (x) =

ˆ ∞
−∞

f(x, y) dy converges uniformly on I if the integral

exists for every x and

sup
x∈I

∣∣∣∣ˆ R

−R
f(x, y) dy − F (x)

∣∣∣∣→ 0, as R→∞.

Uniform convergence of a principal value integral

Another useful concept (that’s true in a setting a lot more general than ours) is that of dom-
inated convergence. In a sense this is a uniform convergence, and as the following theorem
shows we can use this to obtain uniform convergence as defined above.
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Theorem. Suppose that f : R2 → C and that F (x) =

ˆ ∞
−∞

f(x, y) dy exists for all x.

If there exists an absolutely integrable function g : R → R such that |f(x, y)| ≤ g(y) for

all x, y ∈ R, then

ˆ ∞
−∞

f(x, y) dy converges uniformly on R.

Dominated convergence

Proof. Let FR(x) =

ˆ R

−R
f(x, y) dy, R > 0. Since F (x) exists for every x, it is clear that

|F (x)− FR(x)| =
∣∣∣∣ˆ −R
−∞

f(x, y) dy +

ˆ ∞
R

f(x, y) dy

∣∣∣∣ ≤ ˆ −R
−∞
|f(x, y)| dy +

ˆ ∞
R

|f(x, y)| dy.

Observe now that |f(x, y)| ≤ g(y) implies thatˆ −R
−∞
|f(x, y)| dy ≤

ˆ −R
−∞

g(y) dy → 0,

as R → ∞ independently of x (since we know that g is absolutely integrable). Obviously the

analogous result holds for

ˆ ∞
R

|f(x, y)| dy. This proves that

sup
x∈R
|F (x)− FR(x)| ≤

ˆ −R
−∞

g(y) dy +

ˆ ∞
R

g(y) dy → 0,

as R→∞, which is uniform convergence.

Theorem. Suppose that f : R2 → C is continuous on [c, d]× [a,R]. Then

(i) FR(x) =

ˆ R

a

f(x, y) dy is continuous on [c, d]

(ii) and if in addition f is continuous on [c, d]× [a,∞[ and F (x) =

ˆ ∞
a

f(x, y) dy converges

uniformly (on [c, d]), then F is continuous.

Proof. This result is dependent on the uniform continuity of f on the closed set [c, d]× [a,R]
(a continuous function on a compact set is always uniformly continuous), meaning that for
every ε > 0 there is a δ > 0 such that

|(x, y)− (x0, y0)| < δ ⇒ |f(x, y)− f(x0, y0)| < ε.

Note that δ is independent of the points x, y, x0, y0 (this is the uniformity).

(i) So, let ε > 0 be fixed and choose δ > 0 such that |f(x + h, y) − f(x, y)| < ε

R− a
when |h| < δ. Then

|FR(x+ h)− FR(x)| =
∣∣∣∣ˆ R

a

(
f(x+ h, y)− f(x, y)

)
dy

∣∣∣∣
≤
ˆ R

a

|f(x+ h, y)− f(x, y)| dy < ε

R− a

ˆ R

a

dy = ε,

which proves that FR is continuous.
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(ii) Since FR is continuous and FR → F uniformly on the interval [c, d], it follows that F is
continuous on [c, d].

Theorem. Suppose that f : R2 → C is a continuous function on [c, d] × [a,∞[ and

that F (x) =

ˆ ∞
a

f(x, y) dy converges uniformly (on [c, d]). Then

ˆ d

c

(ˆ ∞
a

f(x, y) dy

)
dx =

ˆ ∞
a

(ˆ d

c

f(x, y) dx

)
dy. (6.6)

Exchanging the order of integration (Fubini’s Theorem)

Proof. From standard multivariate analysis, we know that

ˆ d

c

(ˆ R

a

f(x, y) dy

)
dx =

ˆ R

a

(ˆ d

c

f(x, y) dx

)
dy

for any constant R > 0. Now, by the uniform convergence, it is clear that

ˆ ∞
a

(ˆ d

c

f(x, y) dx

)
dy = lim

R→∞

ˆ R

a

(ˆ d

c

f(x, y) dx

)
dy = lim

R→∞

ˆ d

c

(ˆ R

a

f(x, y) dy

)
dx

= lim
R→∞

ˆ d

c

FR(x) dx =

ˆ d

c

lim
R→∞

FR(x) dx =

ˆ d

c

F (x) dx,

which implies that (6.6) holds.

Note that we can let a = −∞ in the previous theorems by exchanging [a,R] by [−R,R] and
consider the principal values.

Theorem. Let f : R2 → C be continuous and let f ′x(x, y) exist and also be continuous.

Suppose that

ˆ ∞
−∞

f(x, y) dy is convergent for every x and suppose that

ˆ ∞
−∞

f ′x(x, y) dy is

uniformly convergent. Then

F ′(x) =
d

dx

ˆ ∞
−∞

f(x, y) dy =

ˆ ∞
−∞

f ′x(x, y) dy.

Leibniz rule

Proof. Let G(x) =

ˆ ∞
a

f ′x(x, y) dy. Since this integral is assumed to be uniformly convergent

and f ′x is continuous, it is clear that also G is continuous. Hence, for any b ∈ R,
ˆ x

b

G(t) dt =

ˆ x

b

ˆ ∞
−∞

f ′t(t, y) dy dt =

ˆ ∞
−∞

ˆ x

b

f ′t(t, y) dt dy

=

ˆ ∞
−∞

(
f(x, y)− f(b, y)

)
dy = F (x)− F (b).

The fact that G is continuous proves that

d

dx

ˆ x

b

G(t) dt = G(x),
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so

F ′(x) =
d

dx

(
F (x)− F (b)

)
= G(x) =

ˆ ∞
−∞

f ′x(x, y) dy,

which is precisely want we wanted to show.

6.7 Proof that F (xu(x))(ω) = i(F u(ω))′

The assumption was that u ∈ G(R) and that xu(x) is absolutely integrable (well.. we assumed
that this product also belonged toG(R) but given that u ∈ G(R) this is equivalent). First, let us
assume that u is continuous. Since |eiωx| = 1 for ω ∈ R, it follows that the integral F(xu(x))(ω)
converges uniformly. By Leibniz’ theorem, we can thus move the differentiation inside the
integral obtaining that

d

dω
F(u)(ω) =

ˆ ∞
−∞

u(x)
d

dω
e−iωx dx = −i

ˆ ∞
−∞

xu(x)e−iωx dx = −iF(xu(x))(ω),

which proves the claim in the case when u is continuous. If u has points of discontinuity,
say {an}n∈Z in increasing order, then the series

F(xu(x))(ω) =
∑
n∈Z

ˆ an+1

an

xu(x)e−iωx dx

will converge uniformly, so by the argument above,

d

dω
F(u)(ω) =

∑
n∈Z

d

dω

ˆ an+1

an

u(x)e−iωx dx = −i
∑
n∈Z

ˆ an+1

an

xu(x)e−iωx dx = −iF(xu(x))(ω).

Note that xu(x) will have at most the same discontinuity points as u.
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Chapter 7

Inversion, Plancherel and Convolution

“You should not drink and bake”
—Mark Kaminski

7.1 Inversion of the Fourier Transform

So suppose that we have u ∈ G(R) and have calculated the Fourier transform F u(ω). Can
we from F u(ω) recover the function we started with? Considering that the Fourier transform
is constructed by the multiplication with e−iωx and then integration, what would happen if we
multiplied with eiωx and integrate again? Formally,

ˆ ∞
−∞
F u(ω)eiωx dω = lim

R→∞

ˆ R

−R

ˆ ∞
−∞

u(t)e−iωteiωx dt dω = lim
R→∞

ˆ R

−R

ˆ ∞
−∞

u(t)e−iω(x−t) dt dω

= lim
R→∞

ˆ ∞
−∞

u(t)

(ˆ R

−R
e−iω(x−t) dω

)
dt,

where we changed the order of integration (this can be motivated) but we’re left with something
kind of weird in the inner parenthesis and we would probably like to move the limit inside the
outer integral. First, let’s look at the expression in the inner parenthesis:

ˆ R

−R
e−iω(x−t) dω =

[
e−iω(x−t)

−i(x− t)

]R
ω=−R

= −e
−iR(x−t)

i(x− t)
+
eiR(x−t)

i(x− t)
=

2 sin(R(x− t))
x− t

, x 6= t.

Definition. We define the Dirichlet kernel for the Fourier transform by

DR(x) =
sin(Rx)

πx
, x 6= 0, R > 0,

and DR(0) = R/π.

The Dirichlet kernel (on the real line)

Note that we changed the normalization of the function. There’s a reason for this and we’ll get
to that soon. For now, observe that

1

2π

ˆ ∞
−∞
F u(ω)eiωx dω = lim

R→∞

ˆ ∞
−∞

u(t)DR(x− t) dt = lim
R→∞

ˆ ∞
−∞

u(t+ x)DR(t) dt.
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You probably recall the sinc-function, and the Dirichlet kernel on the real line is such a function
and for a couple of values of R you can see the graphs below.

R = 1

R = 2

R = 5

R = 7

x

y

5

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

Theorem. If u ∈ G(R) has right- and lefthand derivatives at x, then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)eiωx dω =

u(x+) + u(x−)

2
.

The Fourier inversion formula

Proof. First, we write

1

2π

ˆ R

−R
F u(ω)eiωx dω =

ˆ 0

−∞
u(t+ x)DR(t) dt+

ˆ ∞
0

u(t+ x)DR(t) dt

and claim that
ˆ 0

−∞
u(t+ x)DR(t) dt→ u(x−)

2
and

ˆ ∞
0

u(t+ x)DR(t) dt→ u(x+)

2
,

as R → ∞. We prove the second identity (the first is proved analogously). To this end, we
split the integral in two parts:

ˆ ∞
0

u(t+ x)DR(t) dt =

ˆ π

0

u(t+ x)DR(t) dt+

ˆ ∞
π

u(t+ x)DR(t) dt.

The reason for this is that we need to exploit different properties of u to prove the desired result.
First, let x be fixed. Then the function t 7→ u(t + x) is in G(R), so the Riemann Lebesgue
lemma implies that

lim
R→∞

ˆ ∞
π

u(t+ x)DR(t) dt = lim
R→∞

1

π

ˆ ∞
π

u(t+ x)

t
sin(Rt) dt = 0.
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Turning our attention to the first integral, we writeˆ π

0

u(t+ x)DR(t) dt =

ˆ π

0

(
u(t+ x)− u(x+)

)
DR(t) dt+

ˆ π

0

u(x+)DR(t) dt

=

ˆ π

0

(
u(t+ x)− u(x+)

)
DR(t) dt+ u(x+)

ˆ π

0

DR(t) dt.

Since D+u(x) exists (by assumption), it is clear that the difference quotient

u(t+ x)− u(x+)

t

is bounded and that this expression belongs to E([0, π]). Therefore, the Riemann Lebesgue
lemma (again!) implies that

lim
R→∞

ˆ π

0

(
u(t+ x)− u(x+)

)
DR(t) dt = lim

R→∞

1

π

ˆ π

0

u(t+ x)− u(x+)

t
sin(Rt) dt = 0.

Finally, we observe thatˆ π

0

DR(t) dt =
/
x = Rt

/
=

1

πR

ˆ Rπ

0

sinx

x/R
dx =

1

π

ˆ Rπ

0

sinx

x
dx→ 1

π
· π

2
=

1

2
, as R→∞,

due to the following result.

Theorem.

ˆ ∞
0

sinx

x
dx =

π

2
.

We defer the proof of this until at the end of the lecture.

Corollary. If u, v ∈ G(R) and F u(ω) = F v(ω) for every ω ∈ R, then u(x) = v(x) for
all x ∈ R where u and v are continuous and D±u(x) and D±v(x) exists.

Uniqueness

Find a (formal) expression for a nonzero solution to u′′(x)− xu(x) = 0.

An Airy equation

Solution. Assuming that u ∈ G(R) is twice differentiable with u′, u′′ ∈ G(R), we can take the
Fourier transform and obtain that

(iω)2U(ω)− iU ′(ω) = 0 ⇔ U ′(ω)− iω2U(ω) = 0

⇔ d

dω

(
e−iω

3/3U(ω)
)

= 0 ⇔ U(ω) = Ceiω
3/3,

where C is an arbitrary constant (and we used an integrating factor to solve the differential
equation). Therefore,

u(x) =
1

2π

ˆ ∞
−∞

Ceiω
3/3eiωx dω = D

ˆ ∞
−∞

ei(ω
3/3+ωx) dω,

where D is some constant, might be an expression for a solution. Now the question is of course
if this integral is convergent. Certainly it is not absolutely integrable (why?) and we can’t
claim that the expression solves the equation by previous results. This is an instance where we
would like to extend the Fourier transform to a larger class of functions.
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7.2 The Fourier Transform of the Fourier Transform

So looking at the inverse Fourier transform, it’s almost the same as the Fourier transform.
Indeed, the only difference is the sign in the exponent of the exponential and the factor before
the integral. This means that the inverse transform has pretty much the same properties as
the Fourier transform. This also means the following useful result.

Theorem. If u, U ∈ G(R) and U(ω) = F(u)(ω), then

F−1(U)(x) =
1

2π
F
(
(F u)(−ω)

)
(x) and F(F u(ω))(x) = 2πu(−x),

for every x where u is continuous and D±u(x) exist.

This follows immediately from the definitions of the transforms and the result above. The
assumption that D±u(x) exist is superfluous but we do not know that at this point (we’ll show
that next lecture). If u is discontinuous, but still in G(R), then the equalities still hold if we
view the results as elements from L1(R), meaning that the difference has L1-norm zero.

Find the Fourier transform of
1

1 + x2
.

Example

Solution. Let u =
1

2
e−|x|. We know from before that F(u) = F(e−|x|/2)(ω) =

1

1 + ω2
, and

since both u and x 7→ 1

1 + x2
belong to G(R) and are continuous with right- and lefthand

derivatives at every point, we find that

2π · 1

2
e−|−x| = F(F u(ω))(x) = F

(
1

1 + (−ω)2

)
(x) = F

(
1

1 + ω2

)
(x).

In other words,

F
(

1

1 + x2

)
(ω) = πe−|ω|.

7.3 Convolution

A useful type of “product” of two functions is the convolution (sv. faltning), defined as follows.

Definition. The convolution u ∗ v : R → C of two functions u : R → C and v : R → C is
defined by

(u ∗ v)(x) =

ˆ ∞
−∞

u(t)v(x− t) dt, x ∈ R,

whenever this integral exists.

Convolution

So when does this integral exist?
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Theorem. If u, v ∈ G(R), then u ∗ v ∈ G(R).

Proof. We first prove that u ∗ v is absolutely integrable:

ˆ ∞
−∞
|u ∗ v(x)| dx =

ˆ ∞
−∞

∣∣∣∣ˆ ∞
−∞

u(t)v(x− t) dt
∣∣∣∣ dx

≤ / monotonicity / ≤
ˆ ∞
−∞

ˆ ∞
−∞
|u(t)v(x− t)| dt dx

= / Fubini / =

ˆ ∞
−∞

ˆ ∞
−∞
|u(t)v(x− t)| dx dt

=

ˆ ∞
−∞
|u(t)|

ˆ ∞
−∞
|v(x− t)| dx dt.

Note now that ˆ ∞
−∞
|v(x− t)| dx = / s = x− t / =

ˆ ∞
−∞
|v(s)| ds,

so ˆ ∞
−∞
|u(t)|

ˆ ∞
−∞
|v(x− t)| dx dt =

(ˆ ∞
−∞
|u(t)| dt

)(ˆ ∞
−∞
|v(s)| ds

)
<∞.

A more compact way of stating this result is that

‖u ∗ v‖L1(R) ≤ ‖u‖L1(R)‖v‖L1(R).

The right-hand side is finite by assumption.

Note. This result holds for any integrable functions (we do not need the piecewise continuity
to prove convergence).

7.3.1 So What Is the Convolution?

The convolution is a type of moving average, where we shape one function by another. There
are many (seriously.. there are a lot of them) applications where convolutions appear. Linear
systems, (partial) differential equations, probability theory, integration theory, etc.

Let u(x) = 5H(x+ 2)− 5H(x− 2) and v(x) = 4H(x+ 1)− 4H(x− 2), that is,

u(x) =

{
5, −2 ≤ x ≤ 2,

0, elsewhere
and v(x) =

{
4, −1 ≤ x ≤ 2,

0, elsewhere.

Find the convolution u ∗ v(x).

Example
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Solution. Since both functions are defined by cases, a reasonable procedure is as follows.

(i) First, identify where the functions have jumps (or where the support1 is if it is compact).
We also express both functions in terms of a variable t that’s going to disappear when we
integrate.

t

y
y = u(t)

−4 −3 −2 −1 0 1 2 3 4
t

y
y = v(t)

−4 −3 −2 −1 0 1 2 3 4

(ii) Now we mirror v, so lets draw y = v(−t). Since we will consider v(x − t), this graph
corresponds to x = 0. We need to keep track of where x is.

x

y
y = v(−t)

x = 0
−4 −3 −2 −1 1 2 3 4

(iii) Draw both u(t) and v(x− t) in the same diagram, identifying when things change.

First, we see that for x < −3, we have no overlap.

x

y

x
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Obviously, u ∗ v(x) = 0 for x < −3.

For −3 ≤ x ≤ 0, we have some overlap:

1The support of a function u : R→ C is the smallest closed set E such that {x ∈ R : u(x) 6= 0} ⊂ E.

102



Chapter 7. Inversion, Plancherel and Convolution 7.3. Convolution

x

y

x
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

u ∗ v(x) =

ˆ x+1

−2

u(t)v(x− t) dt =

ˆ x+1

−2

5 · 4 dt = 20(x+ 3).

For 0 ≤ x ≤ 1, we have complete overlap:

x

y

x
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

u ∗ v(x) =

ˆ x+1

x−2

u(t)v(x− t) dt =

ˆ x+1

x−2

5 · 4 dt = 20(x+ 1− x+ 2) = 20 · 3.

For 1 ≤ x ≤ 4, we have some overlap:

x

y

x
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

u ∗ v(x) =

ˆ 2

x−2

u(t)v(x− t) dt =

ˆ 2

x−2

5 · 4 dt = 20(4− x).

For x > 4, there is no overlap so u ∗ v(x) = 0.
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x

y

x
−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

We have now covered all possibilities for x, so the answer is

u ∗ v(x) =



0, x < −3,

20(x+ 3), −3 ≤ x < 0,

60, 0 ≤ x < 1,

20(4− x), 1 ≤ x ≤ 4,

0, x > 4,

and the graph looks like this.

x

y

60

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

7.3.2 The Fourier Transform

So now to one of the most important properties of the Fourier transform: the Fourier transform
of the convolution of u and v is the product of the Fourier transforms of u and v (separately).

Theorem. Suppose that u, v ∈ G(R). Then F(u ∗ v)(ω) = F u(ω)F v(ω).

Convolution

Proof. Let F u(ω) = U(ω) and F v(ω) = V (ω). Then

F(u ∗ v)(ω) =

ˆ ∞
−∞

(u ∗ v)(x)e−iωx dx =

ˆ ∞
−∞

(ˆ ∞
−∞

u(t)v(x− t) dt
)
e−iωx dx

= / Fubini / =

ˆ ∞
−∞

u(t)

ˆ ∞
−∞

v(x− t)e−iωx dx dt =

ˆ ∞
−∞

u(t)V (ω)e−iωtdt

= V (ω)

ˆ ∞
−∞

u(t)e−iωtdt = V (ω)U(ω).
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Find a solution to the integral equation

ˆ ∞
−∞

u(t)u(x− t) dt = e−x
2

.

Example

Solution. The left-hand side is the convolution of u with itself. Assume that u ∈ G(R). Then
taking the Fourier transform of both sides in the equality yields

U(ω)U(ω) = F(e−x
2

)(ω) = e−ω
2/4

so assuming that U is real-valued (is this obvious?),

|U(ω)| =
√
e−ω2/4 = e−ω

2/8,

so

U(ω) = ±e−ω2/8 = ±
√

2 · 1√
2
e−(ω/

√
2)2/4 = ±

√
2 · 1√

2
F

(
ω√
2

)
,

where we rewrote the right-hand side in term of F (ω) = F(e−x
2
)(ω). Hence

u(x) = ±
√

2e−(x
√

2)2 = ±
√

2e−2x2 ,

by a scaling argument. Is this a solution? Yes, by uniqueness (obviously u is continuously
differentiable).

7.3.3 The Fourier Transform of a Product

So is there a way of finding the Fourier transform of a product? As it turns out, there is. At
least if we are willing to calculate a convolution in the frequency domain (assuming things are
defined).

Theorem. Suppose that u, v ∈ G(R) such that uv,F u,F v ∈ G(R). Then

F(uv)(ω) =
1

2π
F(u) ∗ F(v)(ω). (7.1)

Fourier Transform of a product

Proof. We observe that

F
(

1

2π
(F(u) ∗ F(v))(ω)

)
(x) =

1

2π
F(F u)(x)F(F v)(x) =

1

2π
· 2πu(−x)2πv(−x)

= 2π(uv)(−x) = F(F(uv)(ω))(x),

so the Fourier transform of the left-hand and right-hand sides are equal. Assuming that all
integrands belong to G(R), the equality in (7.1) follows from a uniqueness result we show next
lecture (at least except for a countable set of points).

Note that there are a lot of things that need to align correctly for the previous result to hold.
Functions and their respective transforms need to belong to G(R), even if that assumption looks
unnecessary from the final formula. Let’s look at an example where this problem becomes clear.
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Formally find the Fourier transform of u(x) = sinc(x)2 =

(
sinx

x

)2

.

Example

Solution. Recall that the Fourier transform of v(x) = 1 when −1 ≤ x ≤ 1 and v(x) = 0
elsewhere, was F v(ω) = 2 sinc(ω). This would indicate that F(2 sinc(ω))(x) = 2πv(−x),
which would mean that F(sinc(x))(ω) = πv(−ω) = πv(ω). Thus F(sinc)(ω) = π when |ω| < 1
and F(sinc)(ω) = 0 when |ω| ≥ 1. This is a formal result since sinc(x) does not belong to G(R),
so our definition of the Fourier transform does not hold. However, the function sinc2(x) does
belong to G(R), so there exists a Fourier transform of u(x). Proceeding formally, we find that

F(sinc2)(ω) =
1

2π
F(sinc) ∗ F(sinc)(ω) =

{π
2

(
2− |ω|

)
, |ω| < 2,

0, |ω| ≥ 2.

Why? Well, the procedure is analogous to the example we saw earlier. We need to calculate
the convolution of two identical boxes, so symmetry should almost be enough to assume that
it’s a triangle but let’s do the calculation. Let F (ω) = F(sinc)(ω).

ω

y

−1 1
ω

So if −2 < ω < 0, then

F ∗ F (ω) =

ˆ ω+1

−1

F (ξ)F (ω − ξ) dξ =

ˆ ω+1

−1

π2 dξ = π2(ω + 2),

and if 0 < ω < 2, then

F ∗ F (ω) =

ˆ 1

ω−1

F (ξ)F (ω − ξ) dξ =

ˆ 1

ω−1

π2 dξ = π2(2− ω).

For |w| > 2 we have F ∗ F (ω) = 0.

So is this really the Fourier transform of sinc2(x)? One way of proving this is to actually use the
inversion formula we derived above, which basically means that we take the Fourier transform
of the function V (ω) = π(2− |ω|)/2 for |ω| < 2 (and zero elsewhere):

F−1 V (ω) =
1

2π

ˆ 2

−2

π

2
(2− |ω|)eiωx dω = · · · = 1

4

2− e−i2x − ei2x

x2
=

1

2

1− cos 2x

x2
= sinc2(x).

This operation is allowed since it is clear that V ∈ G(R) so the Fourier transform is defined as
before. So we now know that u ∈ G(R) is continuous and differentiable, and thus

F−1F u(x) = u(x).
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Moreover, we just showed that
(F−1 V (ω))(x) = u(x),

so
F−1F u(x) = (F−1 V (ω))(x).

Does this mean that F u(ω) = V (ω)? It actually does since F u and V are continuous, but we
need the uniqueness result that we will prove next lecture. Why can’t we use the one we derived
in this lecture? Well, it’s not clear that D±F u exists, we only know that F u is uniformly
continuous.

7.3.4 Properties of the Convolution Product

The convolution operation (on L1(R)) behaves like we expect of a product in that it has the
following properties.

Theorem. Suppose that u, v, w ∈ G(R). Then the convolution has the following properties.

(i) Associative: (u ∗ v) ∗ w(x) = u ∗ (v ∗ w)(x).

(ii) Distributive: (u+ v) ∗ w(x) = u ∗ w(x) + v ∗ w(x).

(iii) Commutative: u ∗ v(x) = v ∗ u(x).

Proof. Since the convolution of functions from G(R) are mapped to the product of their
respective Fourier transforms, all of these properties follow from the fact that they hold for the
regular product. After showing the corresponding identities for the Fourier transform, we take
the inverse transform to obtain the desired result, at least at all points where the factors are
continuous. We need to use a fact that we will show on the next lecture here, where we show
that if u ∈ G(R) is continuous, then we obtain that F−1F u = u.

Note that these properties are only guaranteed when the elements belong to G(R). It is also
quite possible to directly prove that these properties hold from the definition of the convolution.
An interesting question is if there is a unit for the convolution? That is, is there some element δ
such that u ∗ δ = u for all u? It turns out that this is not possible with δ ∈ L1(R), but moving
over to distributions, we can consider the Dirac impulse “function.”

7.4 Plancherel’s Formula

Recall that the space L2(R) consists of those functions u : R→ C such that

ˆ ∞
−∞
|u(x)|2 dx <∞.

It is true that if u ∈ G(R) ∩ L2(R), then F u ∈ L2(R). This fact is far from trivial, but the
following result holds.
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Theorem. Suppose that u ∈ G(R) ∩ L2(R). Then

ˆ ∞
−∞
|u(x)|2 dx =

1

2π

ˆ ∞
−∞
| F u(ω)|2 dω.

Plancherel’s theorem

Analogously with the case for Fourier series (using the polarization identity), we can obtain the
following generalization.

Theorem. Suppose that u, v ∈ G(R) ∩ L2(R). Then

ˆ ∞
−∞

u(x) v(x) dx =
1

2π

ˆ ∞
−∞
F u(ω)F v(ω) dω.

Plancherel’s (generalized) formula

The proof of Plancherel’s identity follows from Parseval’s using the same polarization identity
that was used for the corresponding proof for Fourier series. So we focus on proving Parseval’s
identity.
Proof. The first question is that it is not clear a priori that the integrals involved are defined.
Remember that the Fourier transform F(u) is uniformly bounded by the L1-norm of u, but
what about the L2-norm of F(u)?
To attack this problem, we first assume that u, v ∈ L1(R) ∩ L2(R) are twice continuously
differentiable (meaning of class C2(R)) and have compact support (meaning basically that
the functions are zero outside of a compact set, say [−M,M ] in our case). Then it is clear
that F(u′′)(ω) = −ω2F u(ω), so

| F u(ω)| =
∣∣∣∣F(u′′)(ω)

ω2

∣∣∣∣ ≤ C

|ω|2
, ω 6= 0,

where C > 0 exists due to the fact that we have the uniform bound

| F(u′′)(ω)| ≤ ‖u′′‖L1(R) <∞

and u′′ is continuous and u′′(x) = 0 for |x| > M for some constant M . Since also F(u) is
continuous, this implies that F(u) ∈ L1(R) (and obviously also L2(R)). Analogously, it follows
that F v ∈ L1(R) ∩ L2(R). Moreover, F−1F v = v (recall that v is also continuous). Then

ˆ ∞
−∞

u(x)v(x) dx =

ˆ ∞
−∞

u(x)F−1(F(v))(x) dx

=

ˆ ∞
−∞

u(x)
1

2π

ˆ ∞
−∞
F(v)(ω)eiωx dω dx

=
1

2π

ˆ ∞
−∞

u(x)

ˆ ∞
−∞
F(v)(ω)e−iωx dω dx

=
/

Fubini
/

=
1

2π

ˆ ∞
−∞

(ˆ ∞
−∞

u(x)e−iωx dx

)
F(v)(ω) dω

=
1

2π

ˆ ∞
−∞
F(u)(ω)F(v)(ω) dω,
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which implies Parseval’s formula (for functions in C2(R) ∩ L1(R) ∩ L2(R)).
So the next question becomes if we can somehow approximate — in some useful sense — a
general function u by something in C2. And the answer is yes, although we defer the proof
until the end of the lecture. For any ε > 0, there exists a function v ∈ C2(R) ∩ L1(R) ∩ L2(R)
such that

‖u− v‖L1(R) < ε and ‖u− v‖L2(R) < ε.

This means that we can choose a sequence v1, v2, v3, . . . such that vk → u in both L1(R)
and L2(R) (norm convergence). To simplify (without loss of generality as it turns out), we
will only prove Parseval’s identity (Plancherel’s formula follows as stated previously). So let u
belong to G(R)∩L2(R). First we prove that F u ∈ L2(R). To this end, let ΩR = [−R,R] and
observe that

‖F u‖L2(ΩR) ≤ ‖F u−F vk‖L2(ΩR) + ‖F vk‖L2(ΩR) ≤ ‖F u−F vk‖L2(ΩR) +K, (7.2)

where if A is a reasonable set (like a union of intervals),

‖w‖L2(A) :=

(ˆ
A

|w(x)|2 dx
)1/2

,

and K > 0 is some constant such that

K2 ≥ 2π

ˆ ∞
−∞
|vk(x)|2 dx =

ˆ ∞
−∞
| F vk(ω)|2 dω ≥ ‖F vk‖2

L2(ΩR), for all k = 1, 2, 3, . . . .

This is possible since ‖vk‖L2(R) → ‖u‖L2(R) by continuity, so the sequence of norms must be
bounded. Indeed, the continuity of the norm is true in general: for any normed linear space X,
the function ‖ · ‖ : X → [0,∞[ is continuous due to the (reverse) triangle inequality:

|‖u‖ − ‖v‖| ≤ ‖u− v‖,

so for any ε > 0, if ‖u−v‖ < δ = ε, then |‖u‖−‖v‖| < ε. Obviously, this implies that also ‖ · ‖α
is continuous on X for any α > 0.
Note also that K in (7.2) is independent of R. Now, since

sup
ω∈R
| F(u− vk)(ω)| ≤ ‖u− vk‖L1(R),

we obtain that

‖F u−F vk‖L2(ΩR) =

(ˆ R

−R
| F(u− vk)(ω)|2 dω

)1/2

≤
(ˆ R

−R
‖F(u− vk)‖2

∞ dω

)1/2

≤ ‖u− vk‖L1(R)

√
2R→ 0,

(7.3)

as k → ∞ for any R > 0. Letting k → ∞ also completes the proof that F u ∈ L2(R) since
the bound is independent of R so we can let R → ∞ after letting k → ∞ (the order here is
important).
We can now consider the following expression, where the integrals are convergent by the argu-
ment above. So, by the triangle inequality,∣∣∣∣2π ˆ ∞

−∞
|u(x)|2 dx−

ˆ ∞
−∞
| F u(ω)|2 dω

∣∣∣∣ ≤ ∣∣∣∣2π ˆ ∞
−∞
|u(x)|2 dx− 2π

ˆ ∞
−∞
|vk(x)|2 dx

∣∣∣∣
+

∣∣∣∣2π ˆ ∞
−∞
|vk(x)|2 dx−

ˆ ∞
−∞
| F u(ω)|2 dω

∣∣∣∣ . (7.4)
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Note that

2π

ˆ ∞
−∞
|u(x)|2 dx− 2π

ˆ ∞
−∞
|vk(x)|2 dx = 2π

(
‖u‖2

2 − ‖vk‖2
2

)
→ 0, as k →∞, (7.5)

since ‖vk‖2 → ‖u‖2. Moreover, since vk ∈ C2 ∩G(R) ∩ L2(R), it is true that

2π

ˆ ∞
−∞
|vk(x)|2 dx =

ˆ ∞
−∞
| F vk(ω)|2 dω,

so

2π

ˆ ∞
−∞
|vk(x)|2 dx−

ˆ ∞
−∞
| F u(ω)|2 dω = ‖F vk‖2

2 − ‖F u‖2
2.

We want to show that ‖F vk‖2 → ‖F u‖2, and by the (reverse) triangle inequality we have

|‖ F vk‖2 − ‖F u‖2| ≤ ‖F vk −F u‖2 = ‖F(vk − u)‖2 =

(ˆ ∞
−∞
| F(vk − u)(ω)|2 dω

)1/2

.

Recalling that the Fourier transform maps G(R)-functions into uniformly bounded functions,
it is true that

| F(vk − u)(ω)| ≤
ˆ ∞
−∞
|vk − u| dx,

where the right-hand side tends to zero (uniformly in ω). To exploit this, we need to split the
integral into two parts before letting k → ∞. Note that ‖F vk‖2 =

√
2π‖vk‖2 →

√
2π‖u‖2

implies that there exists a number N such that

‖F vk −F vn‖2 <
ε

3
, k, n ≥ N.

Let n ≥ N be fixed and choose R > 0 such that
ˆ
|ω|>R

| F vn(ω)|2 dω < ε2

9
and

ˆ
|ω|>R

| F u(ω)|2 dω < ε2

9
. (7.6)

This is possible since F vk,F u ∈ L2(R). Now,

‖F(vk − u)‖L2(R) ≤ ‖F(vk − u)‖L2(ΩR) + ‖F(vk − u)‖L2(Ωc
R),

and for any R > 0, ‖F(vk − u)‖L2(ΩR) → 0 due to (7.3). Furthermore,

‖F(vk − u)‖L2(Ωc
R) ≤ ‖F(vk − vn)‖L2(Ωc

R) + ‖F(vn − u)‖L2(Ωc
R)

≤ ‖F(vk − vn)‖L2(R) + ‖F(vn − u)‖L2(Ωc
R) <

ε

3
+ ‖F(vn − u)‖L2(Ωc

R)

and

‖F(vn − u)‖L2(Ωc
R) ≤ ‖F vn‖L2(Ωc

R) + ‖F u‖L2(Ωc
R) <

2ε

3

because of (7.6). Hence

‖F(vk − u)‖L2(R) ≤ 2R‖vk − u‖L1(R) + ε.

Letting k → ∞ we find that ‖F(vk − u)‖2 < ε and since ε > 0 was arbitrary, this proves
that ‖F vk‖2 → ‖F u‖2 as k → ∞. This also completes the proof that the right-hand side
of (7.4) can be made arbitrarily small.
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0 sinc(x) dx = π
2

Calculate the integral

ˆ ∞
−∞

1

(1 + ω2)2
dω.

Example

Solution. We observe that U(ω) =
1

1 + ω2
is the Fourier transform of u(x) =

1

2
e−|x|. Since it

is clear that u ∈ G(R) ∩ L2(R), Plancherel’s formula implies that

ˆ ∞
−∞

1

(1 + ω2)2
dω = 2π

ˆ ∞
−∞

(
1

2
e−|x|

)2

dx = 4π

ˆ ∞
0

(
1

2
e−|x|

)2

dx = π

ˆ ∞
0

e−2x dx

= π

[
−e
−2x

2

]∞
0

=
π

2
.

7.5 Proof That

ˆ̂̂ ∞
0

sinc (x)dx =
π

2

First we prove that ˆ ∞
0

sinx

x
dx (7.7)

is convergent. The idea is that if we know this, we can choose a particular way for the upper
limit to approach infinity (and be sure that this is the correct value).

Note that since sin(x)/x is bounded and continuous (the limit when x→ 0 is 1), it is clear that

ˆ π

0

sinx

x
dx

is convergent. Now, using integration by parts we obtain

ˆ b

π

x−1 sinx dx =
[
−x−1 cosx

]b
π
−
ˆ b

π

cosx

x2
dx.

The integral in the right-hand side is absolutely convergent since

ˆ b

π

∣∣∣cosx

x2

∣∣∣ dx ≤ ˆ b

π

1

x2
dx =

[
−1

x

]b
π

=
1

π
− 1

b
→ 1

π

as b→∞ (the exact number is not important and similarly the number π is arbitrary). So the
conclusion is that (7.7) is convergent.

Since (7.7) is convergent, we can find it’s value by the following calculation:

ˆ ∞
0

sinx

x
dx = lim

Z3m→∞

ˆ (m+1/2)π

0

sinx

x
dx

=

/
t =

x

m+ 1/2

/
= lim

Z3m→∞

ˆ π

0

sin(t(m+ 1/2))

t
dt

= lim
Z3m→∞

1

2

ˆ π

0

2 sin(t/2)

t
Dm(t) dt
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where Dm(t) is the Dirichlet kernel on [−π, π], that is

Dm(t) =
m∑

k=−m

e−ikt =
sin(t(2m+ 1)/2)

sin(t/2)
;

see Lecture 3. Moreover, the convergence result from Lecture 3 shows that if u ∈ E ′[−π, π],
then

lim
m→∞

1

2π

ˆ π

−π
u(t+ x)Dm(t) dt =

u(x+) + u(x−)

2
.

So letting u(t) =
2 sin(t/2)

t
for 0 ≤ t ≤ π and u = 0 for −π < t < 0 (and extended periodically),

we observe that obviously u ∈ E and we see that

D+u(0) = lim
h→0+

u(h)− u(0)

h
= lim

h→0+

2 sin(h/2)/h− 1

h
= lim

h→0+

1

h2
(2 sin(h/2)− h)

= lim
h→0+

1

h2

(
2
(
h/2 +O(h3)

)
− h
)

= lim
h→0+

O(h) = 0.

Obviously D−u(0) = 0. Since u(0+) = 1 and u(0−) = 0, we therefore obtain that

lim
Z3m→∞

1

2

ˆ π

0

2 sin(t/2)

t
Dm(t) dt = π lim

Z3m→∞

1

2π

ˆ π

−π
u(t)Dm(t) dt = π

1 + 0

2
=
π

2
.

7.5.1 ...but it is not absolutely convergent

Note though, that (7.7) is not absolutely convergent. We can see this by rewriting as a series
of partial integrals:

ˆ ∞
π

| sinx|
|x|

dx =
∞∑
k=1

ˆ (k+1)π

kπ

| sinx|
x

dx ≥
∞∑
k=1

1

kπ

ˆ (k+1)π

kπ

| sinx| dx =
2

π

∞∑
k=1

1

k
=∞,

since

ˆ π

0

| sinx| dx = 2 (this is the same for every interval [kπ, (k + 1)π]).
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7.6 An Approximation Result

So this is going to be fairly similar to what we did in lecture 5, but instead of waving our hands,
let’s go through the details.

Theorem. Suppose that u ∈ G(R) ∩ L2(R) and let ε > 0. Then there exists a function v
in C2(R) such that the following holds.

(i) There exists an interval [−M,M ] such that v(x) = 0 for |x| > M .

(ii)

ˆ ∞
−∞
|u(x)− v(x)|2 dx < ε2.

(iii)

ˆ ∞
−∞
|u(x)− v(x)| dx < ε.

Proof. To produce such a function v, we will use the fact that u and |u|2 are absolutely
integrable (in the Riemann sense) to find a partition where any Riemann sum is close enough
to the integral. Before doing this, lets fix so we have compact support. We do this by observing
that since u and |u|2 are absolutely integrable on R, there exists a number L > 0 such that

max

{ˆ −L
−∞
|u(x)| dx+

ˆ ∞
L

|u(x)| dx,
ˆ −L
−∞
|u(x)|2 dx+

ˆ ∞
L

|u(x)|2 dx
}
< min

{
ε

3
,
ε2

18

}
.

Now, on [−L,L], we choose a partition

x0 = −L < x1 < x2 < · · · < xn = L

such that u is continuous on each ]xk, xk+1[ and∣∣∣∣∣
ˆ L

−L
u(x) dx−

n−1∑
k=0

ck(xk+1 − xk)

∣∣∣∣∣ < ε

3
,

where ck = u(ξk) for some ξk ∈ [xk, xk+1]. Let ζ(x) = ck when xk ≤ x < xk+1, k = 0, 1, 2, . . .
and zero elsewhere.

Note that by the uniform continuity of u on each [xi, xi+1] (after possible redefinition at the
end points), it is true that for any ε > 0, there is a δi > 0 such that

x, y ∈ [xi, xi+1] : |x− y| < δi ⇒ |u(x)− u(y)| < min

{
ε

6L
,

ε√
18L

}
.

We therefore choose δ = min{δi} and since clearly δ > 0, it is possible to refine the parti-
tion {xi}ni=0 of [−L,L] such that |xi+1 − xi| < δ, i = 0, 1, 2, . . . , n− 1.

Graphically, we could have something like this.
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x

y

x0 x1 x2 x3 x4 x5 x6 x7 x8 · · · xn−1xn−2 xn

From this it follows that

|u(x)− ζ(x)| = |u(x)− ck| ≤ min

{
ε

6L
,

ε√
36L

}
, xi < x < xi+1,

since ck = u(ξk) for some ξk such that xk < ξk ≤ xk+1. The inequality might not hold at the
end-points, but this does not matter for the integral. This implies thatˆ xi+1

xi

|u(x)− ζ(x)| dx ≤ ε

6L
|xi+1 − xi|, i = 0, 1, 2, . . . , n− 1

and ˆ xi+1

xi

|u(x)− ζ(x)|2 dx ≤ ε2

36L
|xi+1 − xi|, i = 0, 1, 2, . . . , n− 1,

so

‖u− ζ‖2
L2(R) =

ˆ ∞
−∞
|u(x)− ζ(x)|2 dx

=

ˆ −L
−∞
|u(x)|2 dx+

n−1∑
k=0

ˆ xk+1

xk

|u(x)− ζ(x)|2 dx+

ˆ ∞
L

|u(x)|2 dx

≤ ε2

18
+

n−1∑
k=0

ε2

36L
|xi+1 − xi| =

ε2

9

and

‖u− ζ‖L1(R) =

ˆ ∞
−∞
|u(x)− ζ(x)| dx

=

ˆ −L
−∞
|u(x)| dx+

n−1∑
k=0

ˆ xk+1

xk

|u(x)− ζ(x)| dx+

ˆ ∞
L

|u(x)| dx

≤ ε

6
+

n−1∑
k=0

ε

6L
|xi+1 − xi| =

ε

3
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So how do we turn this into something that’s twice differentiable? We will proceed similar
to what we did in lecture 5, but a straight line will not do. Suppose we have two constant
segments, one defined as 0 on [−1, 0] and one defined as 1 on [1, 2]. Can we join these segments
smoothly? Sure we can, in a lot of different ways. For our purpose, we need something of
class C2, so twice continuously differentiable. The most straight forward idea is probably to
match a polynomial at the end points while making certain that also the derivatives match.
Let η(x) be such a polynomial. We want the following to hold:

η(0) = 0, η(1) = 1, η′(0) = 0, η′(1) = 0, η′′(0) = 0, η′′(1) = 0.

So six restrictions. Using a fifth degree polynomial as ansatz, we find that

η(x) = x5 − 15x4 + 10x3.

Some basic analysis shows that there are no extreme values on ]0, 1[ so the maximum and
minimum are attained at the end points, which is nice since that means that 0 ≤ η(x) ≤ 1
on [0, 1]. Let’s make the following definition:

η(x) =


0, x < 0,

6x5 − 15x4 + 10x3, 0 ≤ x ≤ 1,

1, x > 1.

What we now have accomplished can be seen in the figure below.

x

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1
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0.4

0.5

0.6

0.7

0.8

0.9

1.0

We can use this function in the following way, scaling and translating as needed. Choose a δ > 0
such that (yeah yeah..)

δ < min

{
ε

12K(n+ 1)
,

ε2

72K2(n+ 1)

}
,

where K is some number such that |ζ(x)| ≤ K for all x ∈ [−L,L]. Define v such that v(x) = ck
when xk + δ ≤ x ≤ xk+1 − δ and for xk − δ < x < xk + δ, we use the function

ck + (ck+1 − ck)η
(
x− (xk − δ)

2δ

)
.

The result can be seen in the graph below.
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x

y

x0 x1 x2 x3 x4 x5 x6 x7 x8 · · · xn−1xn−2 xn

Note that v(x) = ζ(x) for most of R, so

‖v − ζ‖2
L2(R) =

ˆ ∞
−∞
|v(x)− ζ(x)|2 dx =

n∑
k=0

ˆ xk+δ

xk−δ
|v(x)− ζ(x)|2 dx

≤ 8(n+ 1)K2δ ≤ ε2

9
,

where we used the rough estimate |v(x) − ζ(x)| ≤ 2K on [−L,L], which holds if |u(x)| ≤ K
(which implies that |ζ(x)| ≤ K as well).
Similarly, we obtain that

‖v − ζ‖L1(R) =

ˆ ∞
−∞
|v(x)− ζ(x)| dx =

n∑
k=0

ˆ xk+δ

xk−δ
|v(x)− ζ(x)| dx

≤ 4(n+ 1)Kδ ≤ ε

3
.
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Chapter 8

Uniqueness

“Consider that a divorce!”
—Douglas Quaid

8.1 Uniqueness

Similar to where we were in Lecture 5 for Fourier series, we know find ourselves in a similar spot
with regards to the Fourier transform. Indeed, we have seen conditions for when the Fourier
transform exists and we have seen conditions for when we can find the inverse (analogously to
when the Fourier series converges “correctly”).

Question. Suppose that u, v ∈ G(R) has the Fourier transforms F u and F v, respectively.
If F u = F v, what can we say about the functions u and v? Are they equal? In what sense?

We will show that if u, v ∈ G(R) and F u = F v, then u(x) = v(x) wherever both u and v are
continuous.

8.2 Cesàro Summation for Integrals

For our purposes, recall that we consider the principal value for the Fourier transform and its
inverse, that is, integrals of the formˆ ∞

−∞
f(x) dx = lim

R→∞

ˆ R

−R
f(x) dx, (8.1)

and that this might change for which functions f the integral is convergent. Now, we can obtain
even better convergence by considering the mean value integral of the partial integrals, that is,

lim
M→∞

1

M

ˆ M

0

ˆ r

−r
f(x) dx dr. (8.2)

This is analogous to the mean value of the partial sums for the Cesàro summation for series.
Similarly to that case, if the limit in (8.1) exists, then the limit in (8.2) exists as well and
converges to the same value.

Indeed, let Ir =

ˆ r

−r
u(x) dx → I be convergent and let ε > 0. Then there exists N > 0 such

that |Ir − I| ≤ ε if r ≥ N and∣∣∣∣ 1

M

ˆ M

0

Ir dr − I
∣∣∣∣ =

∣∣∣∣ 1

M

ˆ M

0

(Ir − I) dr

∣∣∣∣ ≤ 1

M

ˆ N

0

|Ir − I| dr +
1

M

ˆ M

N

|Ir − I| dr.
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Observing that

ˆ N

0

|Ir − I| dr ≤
ˆ N

0

ˆ r

−r
|u(x)| dx dr +NI ≤ N

ˆ N

−N
|u(x)| dx+NI <∞,

we find that

lim
M→∞

1

M

ˆ N

0

|Ir − I| dr = 0.

Since also
1

M

ˆ M

N

|Ir − I| dr ≤
1

M

ˆ M

N

ε dr ≤ M −N
M

ε < ε,

it must be true that

lim
M→∞

1

M

ˆ M

0

Ir dr = I.

8.3 The Fejér Kernel for the Fourier Transform

We wish to investigate the limit

lim
R→∞

1

2π

ˆ R

−R
F u(ω)eiωx dω

and see if it exists, and if so, what the limit is (hoping for something similar to u(x)). To this
end, let’s consider the Cesàro means:

1

M

ˆ M

0

(
1

2π

ˆ r

−r
F u(ω)eiωx dω

)
dr =

1

2πM

ˆ M

−M

ˆ M

|ω|
F u(ω)eiωx dr dω

=
1

2πM

ˆ M

−M
F u(ω) (M − |ω|) eiωx dω

=
1

2π

ˆ M

−M
F u(ω)

(
1− |ω|

M

)
eiωx dω,

where we changed the order of integration in the first equality. Now, writing out the definition
of F u(ω), we find that

1

2π

ˆ M

−M
F u(ω)

(
1− |ω|

M

)
eiωx dω =

1

2π

ˆ M

−M

(ˆ ∞
−∞

u(t)e−itω dt

)(
1− |ω|

M

)
eiωx dω

=

ˆ ∞
−∞

u(t)
1

2π

ˆ M

−M

(
1− |ω|

M

)
eiω(x−t) dω dt

=

ˆ ∞
−∞

u(t)FM(x− t) dt =

ˆ ∞
−∞

u(t+ x)FM(t) dt,

where we used Fubini’s theorem and where

FM(t) =
1

2π

ˆ M

−M

(
1− |ω|

M

)
eiωt dω

is the Fejér kernel on the real line.
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Theorem. For x 6= 0, we have

FM(x) =
1− cosMx

πMx2
=
M

2π

(
sin(Mx/2)

Mx/2

)2

. (8.3)

Proof. Using integration by parts, we obtain that for x 6= 0,

ˆ M

−M

(
1− |w|

M

)
eiωx dω =

1

ix

([(
1− |w|

M

)
eiωx

]ω=M

ω=−M
+

1

M

ˆ M

−M
sgn(ω)eiωx dω

)
=

1

M(ix)2

(
−
[
eiωx

]0
−M +

[
eiωx

]M
0

)
=

1

Mx2

(
1− e−iMωx − eiMx + 1

)
=

2− 2 cosMx

Mx2
,

so

FM(x) =
1

Mπ

1− cosMx

x2
, x 6= 0. (8.4)

Since 2 sin2 t = 1− cos 2t, t ∈ R, the second formula above follows from (8.4).

M = 2

M = 3

M = 5

M = 10

M = 15

x

y

1

2

−5 −4 −3 −2 −1 1 2 3 4 5
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Theorem.

(i) FM(x) ≥ 0 and FM is an even function.

(ii)

ˆ ∞
−∞

FM(x) dx = 1.

(iii) If τ > 0, then lim
M→∞

FM(x) = 0 uniformly for |x| ≥ τ .

(iv)

ˆ
|x|≥τ

FM(x) dx→ 0 for any τ > 0.

Properties of the Fejér kernel on the real line

Proof.

(i) These properties are obvious from the definition.

(ii) To prove this identity, observe that if φ(x) = 1− |x| for |x| < 1 and φ(x) = 0 for |x| ≥ 1,
then (according to (8.3) above with M = 1 and ω replaced by −ω)

F φ(ω) =

ˆ 1

−1

(1− |x|)e−iωx dx =
2− 2 cosω

ω2
.

Now, since φ is continuous (at zero) and D±φ(0) exists, we know that

1

2π

ˆ ∞
−∞

2− 2 cosω

ω2
eiω·0 dω = φ(0) = 1.

Hence ˆ ∞
−∞

FM(x) dx =

ˆ ∞
−∞

1

Mπ

1− cosMx

x2
dx

=
/
t = Mx

/
=

ˆ ∞
−∞

1

Mπ

1− cos t

(t/M)2

dt

M
=

1

π

ˆ ∞
−∞

1− cos t

t2
dt

=
1

2π

ˆ ∞
−∞

2− 2 cos t

t2
dt = 1.

(iii) Observing that

|FM(x)| = M

2π

(
sin(Mx/2)

Mx/2

)2

≤ M

2π

(
2

Mx

)2

=
2

Mπ

1

x2
, (8.5)

we see that

sup
|x|≥τ
|FM(x)| ≤ 2

Mπ
sup
|x|≥τ

1

x2
=

2

Mπτ 2
→ 0,

as M →∞. Hence we have uniform convergence for |x| ≥ τ for any τ > 0.

(iv) Furthermore, inequality (8.5) also implies thatˆ ∞
τ

FM(x) dx ≤ 2

Mπ

ˆ ∞
τ

1

x2
dx =

2

Mπτ
→ 0,

as M →∞. The integral from −∞ to −τ is handled analogously.
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Theorem. Suppose that u ∈ G(R) (so u has right- and lefthand limits at x ∈ R). Then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)

(
1− |ω|

R

)
eiωx dω =

u(x+) + u(x−)

2
.

Proof. Since
1

2π

ˆ M

−M
F u(ω)

(
1− |ω|

M

)
eiωx dω =

ˆ ∞
−∞

u(t+ x)FM(t) dt,

we start by proving that

ˆ ∞
0

(u(x+ t)− u(x+))FM(t) dt+

ˆ 0

−∞
(u(x+ t)− u(x−))FM(t) dt→ 0,

as M →∞. This implies that the Fejér mean converges:

lim
M→∞

ˆ ∞
−∞

u(t)FM(x− t) dt =
u(x+) + u(x−)

2

since ˆ 0

−∞
FM(t) dt =

ˆ ∞
0

FM(t) dt =
1

2
.

Let ε > 0. Since u has a right-hand limit at x, there is a δ > 0 such that

0 < t < δ ⇒ |u(x+ t)− u(x+)| < ε.

We exploit this and the uniform convergence of FM to obtain that∣∣∣∣ˆ ∞
0

(u(x+ t)− u(x+))FM(t) dt

∣∣∣∣ ≤ ˆ δ

0

εFM(t) dt+

ˆ ∞
δ

|u(x+ t)− u(x+)|FM(t) dt

≤ ε

ˆ ∞
0

FM(t) dt+

ˆ ∞
δ

|u(x+ t)− u(x+)|FM(t) dt

→ ε

2

as M →∞ since FM converges uniformly to zero on [δ,∞[, so

ˆ ∞
δ

|u(x+ t)− u(x+)|FM(t) dt ≤
(

sup
t≥δ

FM(t)

) ˆ ∞
δ

|u(x+ t)| dx+ |u(x+)|
ˆ ∞
δ

FM(t) dt

≤
(

sup
t≥δ

FM(t)

) ˆ ∞
−∞
|u(x)| dx+ |u(x+)|

ˆ ∞
δ

FM(t) dt→ 0,

as M →∞. The second integral is handled analogously.

An immediate consequence of this theorem is the following uniqueness result.
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Corollary. Suppose that u ∈ G(R) and v ∈ G(R). If F u(ω) = F v(ω) for every ω ∈ R,
then u(x) = v(x) for every x ∈ R where both u and v are continuous.

Uniqueness

Furthermore, the following corollary is clear since if an integral converges in the usual sense,
then the Cesàro-means converge to the same value. This shows that the assumption that the
onesided derivatives exist, which we used in the previous lecture, is not necessary. The inversion
works anyway for functions in G(R), provided that the limit exists.

Corollary. Suppose that u ∈ G(R). Then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)eiωx dω =

u(x+) + u(x−)

2
,

whenever the limit exists.

This means that if the limit exists and u has right- and lefthand limits, then the inversion gives
the expected result.
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Chapter 9

The Unilateral Laplace Transform

“Here’s Sub-Zero. Now... Plain Zero!”
—Ben Richards

9.1 The One Sided Laplace Transform

For reasonable functions, we make the following definition.

Definition. The Laplace transform of u : [0,∞[→ C is given by

Lu(s) =

ˆ ∞
0

u(t)e−st dt,

for those s ∈ C where this integral is convergent.

The Laplace transform

Note that in this definition, we start integrating at t = 0. This means that whatever u does
for t < 0, it is not in any way connected with Lu(s). We say that Lu(s) is the one-sided or
unilateral Laplace transform.

x

y

−6 −5 −4 −3 −2 −1 1 2 3 4 5 6
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Black, blue, green... doesn’t matter, the Laplace transform will be the same. Therefore we
often assume that u(t) = 0 for t < 0.
Why this restriction? Well, it does make the transform easier to handle. Secondly, there are a
lot of applications where we consider the variable t to be time, so negative values are not very
interesting. Indeed, we assume that something starts at t = 0. In other words, we consider
causal systems. There is a two-sided version of the Laplace transform as well, which is useful
in many instances, but in this course we will only use the version above.

Suppose that u(t) = eat, where a ∈ C is a constant. Show that Lu(s) =
1

s− a
, Re s > Re a.

Example

Solution. We find that

Lu(s) =

ˆ ∞
0

eate−st dt =

ˆ ∞
0

e−(s−a)t dt =

[
e−(s−a)t

−(s− a)

]∞
0

=
1

s− a
, if Re(s− a) > 0.

As we can see in the example above, the Laplace transform exists if Re s > Re a. For a function
that doesn’t grow faster than eat, the Laplace transform will exist at least for Re s > Re a
(provided that the integral exists). For our purposes, piecewise continuous functions will suffice.
Let’s make the following definition.

Definition. We say that the piecewise continuous function u : [0,∞[ is of exponential order
(of order a) if there exists constants a > 0 and K > 0 such that |u(t)| ≤ Keat for t ≥ 0. The
set of all such functions will be denoted by Xa.

Exponential order (exponential growth)

Theorem. If u ∈ Xa for some a > 0, then the Laplace transform Lu(s) exists (at least)
for Re s > a. Furthermore,

lim
L→∞

ˆ L

0

u(t) e−st dt = Lu(s)

uniformly and Lu(s) is continuous.

Existence

Proof. Obviously ∣∣u(t)e−st
∣∣ ≤ Keat|e−st| = Keate−tRe s = Ke−t(Re s−a),

so if Re s > a then ˆ ∞
0

u(t)e−st dt

converges absolutely. The fact that the convergence is uniform follows from the inequality
above. Indeed, suppose that Re s ≥ b > a. Then

sup
Re s≥b

∣∣∣∣ˆ ∞
0

u(t) e−st dt−
ˆ L

0

u(t) e−st dt

∣∣∣∣ ≤ sup
Re s≥b

ˆ ∞
L

∣∣u(t)e−st
∣∣ dt

≤ K sup
Re s≥b

ˆ ∞
L

e−t(Re s−a) dt =
Ke−L(b−a)

b− a
→ 0,
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as L→∞. Since the limit is uniform, we also obtain that Lu(s) is continuous.

So the region of convergence for the one-sided Laplace transform of functions from Xa typically
looks like this.

Re

Im

Lu(s) converges here

a

9.2 Connection to the Fourier Transform?

The Fourier transform is basically a slice of the Laplace transform — where we let s = iω —
when we restrict the argument function to non-negative values. In other words, we only let s
move along the imaginary axis and consider the function f(t)H(t) where H(t) is the Heaviside
function. So if u is piecewise continuous and Lu(s) exists and s = σ + iω, then

Lu(s) = F
(
e−σtu(t)H(t)

)
(ω).

This means that several things we did for the Fourier transform also holds for the Laplace
transform, at least when it comes to the calculation of the transforms. The convergence results
are different since we now allow exponential growth, but we can “move” the part corresponding
to Re s to the argument function like above and use the corresponding result for the Fourier
transform. We’ll get back to this.
Qualitatively, one can say that the Fourier transform investigates frequency content in a function
by decomposing the function into sinusoids while the Laplace transforms also investigates the
amount of exponential growth/decay a function has.

9.3 Complex Differentiability and Analyticity

Since we’re heading into a domain where s ∈ C, we need to make sure everything is in order.
So to this end, let’s collect some facts we need. A complex valued function u : C→ C is called
differentiable if

u′(z) = lim
h→0

u(z + h)− u(z)

h

exists. The definition is basically the same as for the real case, but going back to the definition of
a limit of a complex expression, it is clear that this two dimensional limit is more restrictive than
that of the single variable case. Indeed, suppose that u(z) = α(x, y)+iβ(x, y), where z = x+iy.
Then the claim that u′x and u′y exist is weaker than claiming that u′(z) defined as above exists. In
fact, if u is differentiable then the components α and β satisfy the Cauchy-Riemann equations:

α′x = β′y and α′y = −β′x.
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Equivalently, these equations can be phrased as

i
∂

∂x
u(x+ iy) =

∂

∂y
u(x+ iy).

There are results in the other direction as well. If u is continuous and has partial derivatives
that satisfy Cauchy-Riemann’s equations, then u is holomorphic (see below).
This topic is not something we need to dig that much deeper into. With the definition above,
one can show that this complex derivative satisfies the same “rules” as in the real one-variable
case, meaning that the product rule, chain rule, and so on works like expected.
We call a function holomorphic at a point z0 if there is a neighborhood B(z0 ; δ) of z0 (meaning
some open disc with z0 as the center) such that f is differentiable for all points in this neigh-
borhood. If one can choose all of C as the neighborhood, the function is usually referred to
as entire. Something rather interesting happens here. Remember that the complex derivative
requires more to exist than the partial derivatives, so what happens is that if u is holomorphic
at z0 then u is infinitely differentiable at z0. Moreover, it turns out that the function is analytic
at z0, meaning that it’s complex Taylor series converges to u(z) for z in some neighborhood
of z0. So we have

u(z) holomorphic at z0 ⇔ u(z) =
∞∑
k=0

u(k)(z0)

k!
(z − z0)k

in some neighborhood of z0. Holomorphic functions have several other very nice properties such
as

(i) Cauchy’s integral theorem:

˛
γ

u(z) dz = 0 for any closed nice enough curve γ;

(ii) Cauchy’s integral formula: u(z) =
1

2πi

˛
γ

u(ζ)

ζ − z
dζ for z ∈ D and γ = ∂D, when u

is holomorphic on the closed disc D. This means that the values of u inside D are
completely described by the values on the boundary.

(iii) Holomorphic functions are conformal if locally invertible (preserving angles).

We could go on and discuss meromorphic functions (holomorphic except for some exception
points where we have poles) and residue calculus, but that’s way off course. We will not use
these types of properties, even if some arguments could be made a lot more elegant that way.
The power series stuff and complex derivatives are enough.

9.3.1 The Laplace Transform is Analytic

If u ∈ Xa, the Laplace transform Lu(s) is analytic for Re s > a. We can prove this in several
ways, and perhaps the most clear one is the following.
Assume first that u is continuous. Let s = σ + iω and suppose that a < σ0 < Re s = σ. Then

Lu(s) =

ˆ ∞
0

e−(σ+iω)tu(t) dt

exists. Put G(σ, ω, t) = e−(σ+iω)tu(t), σ > σ0, t ≥ 0 and ω ∈ R. Noting that

G′σ(σ, ω, t) = −tG(σ, ω, t) and G′ω(σ, ω, t) = −itG(σ, ω, t),
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we see that bothˆ ∞
0

G′σ(σ, ω, t) dt = −
ˆ ∞

0

te−stu(t) dt and

ˆ ∞
0

G′ω(σ, ω, t) dt = −i
ˆ ∞

0

te−stu(t) dt

converge uniformly since |te−st| ≤ Ce−σ0t and the Laplace transform is uniformly convergent
for Re s > a. Moreover, if u is continuous then G, G′σ and G′ω are all continuous. By Leibniz’
rule, this implies that the partial derivatives

∂

∂σ
Lu(s) = −L(tu(t))(s) and

∂

∂ω
Lu(s) = −iL(tu(t))(s)

exist and are continuous, which is nice in of itself. However this also shows that the Cauchy-
Riemann equations hold for Lu(s):

i
∂

∂σ
Lu(s) =

∂

∂ω
Lu(s),

which proves that Lu(s) is analytic at the point s, so Lu(s) is analytic for Re s > a (since the
partial derivatives as well as Lu(s) were continuous). If u is only piecewise continuous, one can
proceed as in the proof of iF(xu(x)) = U ′(ω) from lecture 6.
So while we won’t use the analyticity of the Laplace transform directly in this course, the
following result will prove useful.

Theorem. Let u ∈ Xa. Then L(tu(t))(s) = − d

ds
L(u(t))(s), Re s > a.

Time multiplication

Proof. Similarly to the case with the Fourier transform, observe (formally) that

d

ds
Lu(s) =

d

ds

ˆ ∞
0

u(t)e−st dt =
/

Lebiniz’s rule
/

=

ˆ ∞
0

u(t)
d

ds
e−st dt

=

ˆ ∞
0

−tu(t)e−st dt = −L(tu(t))(s),

where Leibniz’s rule is applicable due to the argument above.

9.4 Rules for the Laplace Transform

The fact that the Laplace transform is an integral immediately proves that it is a linear operator.

Theorem. If a, b ∈ C are constants, then L(au(t) + bv(t)) = aLu + bL v, whenever Lu
and L v exists.

Linearity

Find the Laplace transforms of sin t, cos t and t cos t.

Example
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Solution. By Euler’s equations, we obtain that

L(sin t)(s) = L
(
eit − e−it

2i

)
=

1

2i

(
L(eit)− L(e−it)

)
=

1

2i

(
1

s− i
− 1

s+ i

)
=

1

2i

2i

s2 + 1

=
1

s2 + 1
,

for Re s > 0. Similarly, it follows that

L(cos t)(s) =
s

s2 + 1
,

for Re s > 0. To find the Laplace transform of t cos t, we note that

L(t cos t)(s) = − d

ds
L(cos t)(s) = − d

ds

s

s2 + 1
= −s

2 + 1− 2s2

(s2 + 1)
=

s2 − 1

(s2 + 1)2
.

Theorem. If t0 > 0 and U(s) = Lu(s), then L(u(t− t0)H(t− t0))(s) = e−st0U(s).

Translation (time shift)

The term H(t− t0) is important since we are working with the unilateral Laplace transform.

t

y

t0

y = u(t)

y = u(t− t0)H(t− t0)

Notice the difference with the expression u(t)H(t− t0) (how would this look?).
Proof. A simple substitution shows that

L(u(t− t0)H(t− t0))(s) =

ˆ ∞
t0

u(t− t0)e−st dt = / y = t− t0 / =

ˆ ∞
0

u(y)e−s(y+t0) dy

= e−st0
ˆ ∞

0

u(y)e−sy dy = e−st0 L(u(t))(s).

Theorem. If a > 0, then L(u(ax))(ω) =
1

a
L(u(t))

(s
a

)
.

Scaling
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Notice that we only do this for a > 0 (why?).

Proof. We see that

L(u(at))(s) =

ˆ ∞
0

u(at)e−st dt = / y = at / =

ˆ ∞
0

u(y)e−sy/a
dy

a

=
1

a

ˆ ∞
0

u(y)e−(s/a)y dy =
1

a
Lu
(s
a

)
.

Theorem. Suppose that a ∈ C is constant. Then L(eatu(t))(s) = (L(u(t)))(s− a).

s-shift

Proof. We note that

L(eatu(t))(s) =

ˆ ∞
0

u(t)eate−st dt =

ˆ ∞
0

u(t)e−(s−a)t dt = (Lu)(s− a),

which completes the proof.

Find the Laplace transform of u(t) = e2ttH(3− t).
Example

Solution. This is some type of exponential function that’s cut off at t = 3.

t

y

3

We could plug this into the formula and just do the integration, but we can also apply the rules
we now know. So, first observe that

v(t) = tH(3− t) = t(H(t)−H(t− 3)) = t(H(t)−H(t− 3)H(t− 3)),

so

L(tH(3− t))(s) = − d

ds

(
L(H(t))(s)− e−3s L(H(t))(s)

)
= − d

ds

(
1

s

(
1− e−3s

))
=

1

s2

(
1− e−3s

)
− 3e−3s

s
.

Then

Lu(s) = L v(s− 2) =
1− e−3(s−2)

(s− 2)2
− 3e−3(s−2)

s− 2
=

1 + e6−3s(5− 3s)

(s− 2)2
.
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9.4.1 Differentiation

One of the major uses for the Laplace transform is how it handles derivatives.

Theorem. Let u ∈ Xa be continuous such that u′ is piecewise continuous. Then

L(u′(t))(s) = sL(u(t))(s)− u(0), Re s > a.

Differentiation

Proof. Let L > 0 and let

x0 = 0 < x1 < x2 < x3 < . . . < xn = L

be the points of discontinuity for u′ on [0, L]. For k = 0, 1, 2, . . . , n− 1, we have
ˆ xk+1

xk

u′(t)e−st dt =
[
u(t)e−st

]t=xk+1

t=xk
+ s

ˆ xk+1

xk

u(t)e−st dt

= u(xk+1)e−sxk+1 − u(xk)e
−sxk + s

ˆ xk+1

xk

u(t)e−st dt,

so

ˆ L

0

u′(t)e−st dt =
n−1∑
k=0

(
u(xk+1)e−sxk+1 − u(xk)e

−sxk
)

+ s
n−1∑
k=0

ˆ xk+1

xk

u(t)e−st dt

=
/

telescoping sum
/

= u(L)e−sL − u(0) + s
n−1∑
k=0

ˆ xk+1

xk

u(t)e−st dt

= u(L)e−sL − u(0) + s

ˆ L

0

u(t)e−st dt→ sLu(s)− u(0),

since u(L)e−sL → 0 as L→∞. The last part is clear due to the fact that∣∣u(L)e−sL
∣∣ ≤ KeaLe−LRe s → 0,

as L→∞ (Re s > a).

Use the Laplace transform to find a solution to y′(t) + 3y(t) = 0, t > 0, such that y(0) = 2.

Example

Solution. Taking the Laplace transform, we find that

sY (s)− y(0) + 3Y (s) = 0 ⇔ Y (s)(s+ 3) = 2 ⇔ Y (s) =
2

s+ 3
,

if Re s > −3. We know that L(e3t) = 1/(s + 3), so y(t) = 2e3t is a possible solution. Direct
verification shows that this solves the equation in question.

If the function u ∈ Xa has higher order derivatives (that belong to Xa), one can repeatedly
apply the previous theorem to transform higher order derivatives. Indeed, if u(n) is piecewise
continuous, then this will hold for all derivatives u(k) as well for k = 0, 1, 2, . . . , n. Thus we
obtain the following result.
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Corollary. Let u ∈ Xa be a continuous function such that u(n) is piecewise continuous
and u′, u′′, . . . , u(n−1) ∈ Xa. Then

L(u(n))(s) = sn Lu(s)−
n−1∑
k=0

sn−1−ku(k)(0)

= sn Lu(s)− sn−1u(0)− sn−2u′(0)− · · · − su(n−2)(0)− u(n−1)(0), Re s > a.

Higher order derivatives

Find a solution to y′′(t)− 4y(t) = 4e2t, t > 0, with y(0) = 1 and y′(0) = 0.

Example

Solution. Taking the Laplace transform of both sides in the equality, we find that

s2Y (s)− sy(0)− y′(0)− 4Y (s) =
4

s− 2
⇔ Y (s)(s2 − 4) = s+

4

s− 2

⇔ Y (s) =
s

s2 − 4
+

4

(s2 − 4)(s− 2)
.

Using partial fractions, we find that this expression is equal to

1

2

(
1

s− 2
+

1

s+ 2

)
+

1/4

s− 2
+

1

(s− 2)2
− 1/4

s+ 2
.

We see that

L(e2t) =
1

s− 2
and L(e−2t) =

1

s+ 2
.

Next we note that
1

(s− 2)2
= − d

ds

(
1

s− 2

)
and by the time multiplication theorem,

L(te2t) = − d

ds

(
1

s− 2

)
.

Hence

L
(

1

4
e2t + te2t +

3

4
e−2t

)
= Y (s),

so

y(t) =
1

4
e2t + te2t +

3

4
e−2t

for t > 0. Is this the solution?

Note that L(cosh(t)) =
s

s2 − 1
and L(sinh(t)) =

1

s2 − 1
.

Example
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Chapter 10

Convolution and Inversion

“Don’t disturb my Friend. He’s dead tired.”
—John Matrix

10.1 Convolution

In the case when we have two functions u, v : [0,∞[→ C, the convolution gets slightly easier to
handle.

Definition. The convolution u∗v : [0,∞[→ C of u : [0,∞[→ C and v : [0,∞[→ C is defined
by

(u ∗ v)(t) =

ˆ t

0

u(y)v(t− y) dy, 0 ≤ t <∞,

whenever this integral exists.

Convolution

Theorem. If u, v : [0,∞[→ C belong to Xa, then u ∗ v ∈ Xb for every b > a and

|u ∗ v(t)| ≤ Kteat, t > 0.

Furthermore,
L(u ∗ v)(s) = L(u)(s)L(v)(s), Re s > a.

Proof. By definition, |u(t)| ≤ K1e
at and |v(t)| ≤ K2e

at, so

|u ∗ v(t)| =
∣∣∣∣ˆ t

0

u(τ)v(t− τ) dτ

∣∣∣∣ ≤ / monotonicity / ≤
ˆ t

0

|u(τ)||v(t− τ)| dτ

≤
ˆ t

0

Keaτea(t−τ) dτ = K1K2te
at,

and since limt→∞ te
−δt = 0 for any δ > 0, it follows that |u ∗ v(t)| ≤ Kebt for every b > a.
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So the convolution of u and v is defined and belongs to Xb. Taking the Laplace transform, we
observe that

L(u ∗ v)(s) =

ˆ ∞
0

e−st
ˆ t

0

u(τ)v(t− τ) dτ dt =

ˆ ∞
0

e−s(τ+(t−τ))

ˆ t

0

u(τ)v(t− τ) dτ dt

= / Fubini / =

ˆ ∞
0

u(τ)e−sτ
ˆ ∞
τ

v(t− τ)e−s(t−τ) dt dτ

= / t = y + τ / =

ˆ ∞
0

u(τ)e−sτ
ˆ ∞

0

v(y)e−sy dy dτ

= L v(s)

ˆ ∞
0

u(τ)e−sτdτ = L v(s)Lu(s).

Let u(t) = e−t for t ≥ 0 and v(t) = e−2t for t ≥ 0. Find u ∗ v and L(u ∗ v)(s).

Example

Solution. Method 1: direct calculation. First, let’s draw the graphs and then mirror the one
for v.

τ

y

t

y = v(t− τ)
y = u(τ)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Since both u and v are assumed to be zero for negative arguments, the situation is a bit easier
than the general convolution we saw when dealing with the Fourier transform. It’s only for
arguments between zero and t that we obtain something non-zero. Therefore,

ˆ t

0

u(τ)v(t− τ) dτ =

ˆ t

0

e−τe−2(t−τ) dτ =

ˆ t

0

e−2t+τ dτ = e−2t

ˆ t

0

eτ dτ

= e−2t [eτ ]t0 = e−2t(et − 1) = e−t − e−2t,

so

L(u ∗ v)(s) = L(e−t − e−2t) = L(e−t)− L(e−2t) =
1

s+ 1
− 1

s+ 2
=
s+ 2− (s+ 1)

(s+ 1)(s+ 2)

=
1

(s+ 1)(s+ 2)
.

Method 2: Use the convolution theorem. We find that Lu(s) =
1

s+ 1
and L v(s) =

1

s+ 2
, so

L(u ∗ v)(s) = Lu(s)L v(s) =
1

(s+ 1)(s+ 2)
.
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10.2 Periodic Functions

Suppose that there exists some T > 0 such that u(t + T ) = u(t) for every t ≥ 0. Formally
taking the Laplace transform of u, we find that

Lu(s) =

ˆ ∞
0

u(t)e−st dt =
∞∑
k=0

ˆ (k+1)T

kT

u(t)e−st dt

= / τ = t− kT / =
∞∑
k=0

ˆ T

0

u(τ + kT )e−s(τ+kT ) dτ

=
∞∑
k=0

e−skT
ˆ T

0

u(τ)e−sτ dτ =

(
∞∑
k=0

e−skT

)ˆ T

0

u(τ)e−sτ dτ

=
1

1− e−sT

ˆ T

0

u(τ)e−sτ dτ,

where we used the fact that u is periodic and calculated the resulting geometric series.

Let u(t) = t, 0 ≤ t < 1, and u(t+ 1) = u(t) for t ≥ 0. Find Lu(s).

Example

Solution. Since u is periodic with T = 1, we find that

Lu(s) =
1

1− e−s

ˆ T

0

τe−sτ dτ =
1

1− e−s

([
τe−sτ

−s

]1

0

+
1

s

ˆ T

0

e−sτ dτ

)

=
1

1− e−s

(
e−s

−s
+

1

s

[
e−sτ

−s

]1

0

)
=

1

1− e−s

(
e−s

−s
− e−s

s2
+

1

s2

)
=

es

es − 1

(
−e
−s

s
− e−s

s2
+

1

s2

)
=
es − (s+ 1)

s2(es − 1)
.

Using the periodicity, find the Laplace transform of u(t) = eit.

Example

Solution. Since u has period 2π, we find that

Lu(s) =
1

1− e−2πs

ˆ 2π

0

eiτe−sτ dτ =
1

1− e−2πs

[
e(i−s)τ

i− s

]2π

0

=
1

1− e−2πs
· e

2π(i−s) − 1

i− s

=
1

1− e−2πs
· e
−2πs − 1

i− s
=

1

s− i
,

which is presicely what the transform of eat was derived to be (with a = i).
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10.3 Inversion of the Laplace Transform

Similar to the case with the Fourier transform, there’s a formula for the inversion of the Laplace
transform as well (which implies certain uniqueness results). We will not use this integral
explicitly, but rather use tables to find the correct inverse. However, the fact that we have an
inversion result means that we know certain uniqueness properties of the Laplace transform.
This is an important fact also when using tables.

Theorem. If u ∈ Xa has right- and lefthand limits at a point t > 0, then

lim
L→∞

1

2π

ˆ L

−L
Lu(σ + iω)eσteiωt dω =

u(t+) + u(t−)

2
,

where the vertical line Re z = σ is contained in the region of convergence of Lu(s) (σ > a is
sufficient).

Laplace inversion formula

Proof. Since e−σt is continuous, it is clear that v(t) = H(t)u(t)e−σt has left- and righthand
limits at all t > 0 and belongs to G(R). The fact that Lu(σ + iω) = F(e−σtu(t)H(t))(ω)
enables us to use Fourier inversion, obtaining that

lim
L→∞

1

2π

ˆ L

−L
Lu(σ + iω)e(σ+iω)t dω = eσt lim

L→∞

1

2π

ˆ L

−L
(F v)(ω)eiωt dω

= eσt
v(t+) + v(t−)

2
= eσt

e−σtu(t+) + e−σtu(t−)

2

=
u(t+) + u(t−)

2
,

which is precisely what was stated in the theorem.

Similarly with the Fourier transform, a consequence of this result is the following uniqueness
theorem.

Corollary. Suppose that Lu(s) and L v(s) are convergent for Re s > a, where a > 0,
meaning that u, v ∈ Xa. If Lu(s) = L v(s) on some vertical line Re s = σ, then u(t) = v(t)
for all t where u and v are continuous.

Uniqueness

Note that we could employ the Fourier result from Lecture 6 as well if D±u(t) exists, yielding
the same results.

So what use is this in practice? Well, a lot actually. Even if it mostly happens implicitly.
Consider the differential equations we’ve been working with. We solve the equation in the
Laplace domain, then find something that gives this Laplace transform and boom. We’re done.
Or? Well, if we have a uniqueness result, that would be the case (provided that your solution
satisfies the required properties). Let’s take a look at an example.
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Solve the equation

y′(t) + y(t) =

{
cos t, 0 ≤ t ≤ π

2
,

1− sin t, t > π
2
,

if y(0) = 7.

Example

Solution. Assume that y ∈ Xa. This is important. We will only find solutions that are
bounded by some exponential function. Next we reformulate the right-hand side as(

1−H
(
t− π

2

))
cos t+H

(
t− π

2

)
(1− sin t) = cos t+H

(
t− π

2

)
(1− sin t− cos t)

= cos t+H
(
t− π

2

)(
1− sin

(
t− π

2
+
π

2

)
− cos

(
t− π

2
+
π

2

))
= cos t+H

(
t− π

2

)(
1− cos

(
t− π

2

)
+ sin

(
t− π

2

))
.

The reason for this is that we can use the fact that L(u(t− t0)H(t− t0)) = e−st0 Lu(s). Hence
the equation has the Laplace transform

sY (s)− 7 + Y (s) =
s

s2 + 1
+ e−πs/2

(
1

s
− s

s2 + 1
+

1

s2 + 1

)
,

so if Re s > 0,

Y (s) =
7

s+ 1
+

s

(s+ 1)(s2 + 1)
+ e−πs/2

(
1

s(s+ 1)
+

1− s
(s+ 1)(s2 + 1)

)
=

7

s+ 1
+

1

2

(
s

s2 + 1
+

1

s2 + 1
− 1

s+ 1

)
+ e−sπ/2

(
1

s
− 1

s+ 1
+

1

s+ 1
− s

s2 + 1

)
.

We now observe that

Y (s) =
13

2
L(e−t) +

1

2
(L(cos t) + L(sin t)) + e−sπ/2 (L(H(t))− L(cos t))

= L
(

13

2
e−t +

1

2
cos t+

1

2
sin t+H

(
t− π

2

)(
1− cos

(
t− π

2

)))
so by uniqueness we claim that

y(t) =
13

2
e−t +

1

2
cos t+

1

2
sin t+H

(
t− π

2

)(
1− cos

(
t− π

2

))
=

13

2
e−t +

1

2
cos t+

1

2
sin t+H

(
t− π

2

)
(1− sin t)

=

{
13
2
e−t + 1

2
cos t+ 1

2
sin t, 0 < t < π

2
,

13
2
e−t + 1 + 1

2
cos t− 1

2
sin t, t ≥ π

2
,

which is OK since y ∈ Xa with a > 0.

137



10.4. Limit Results Chapter 10. Convolution and Inversion

Consider y′−2ty = 0, y(0) = 1. Using an integrating factor, we know that y(t) = et
2
. Wrongly

assuming that the solution belongs to Xa for some a > 0, we would find that (ignoring any
issues with the complex variable),

sY (s)− 1 + 2Y ′(s) = 0 ⇔ Y (s) = Ce−s
2/4 + se−s

2/4.

This is NOT the Laplace transform of et
2

(for any constant C). Nope. Nein. Niet. Be very
careful when using the uniqueness result!

10.4 Limit Results

Theorem. Suppose that u : [0,∞[→ C is a bounded function and that u(t)→ A as t→∞.
Then A = lim

R3s→0+
sLu(s).

Final value theorem

Proof. Let s ≥ 0 (so real). We use the fact that u is bounded to obtain uniform convergence.
The Laplace transform of u exists and

sLu(s) =

ˆ ∞
0

su(t)e−st dt = / y = st / =

ˆ ∞
0

u
(y
s

)
e−y dy.

Since |u(y/s)|e−y ≤ Ce−y for some constant C (remember that u is bounded), it is clear that

lim
s→0+

ˆ ∞
0

u
(y
s

)
e−y dy =

ˆ ∞
0

lim
s→0+

u
(y
s

)
e−y dy =

ˆ ∞
0

Ae−y dy = A
[
−e−y

]∞
0

= A.

Theorem. Suppose that u : [0,∞[→ C belongs to Xb and that u(t) → a as t → 0+.
Then a = lim

R3s→∞
sLu(s).

Initial value theorem

Proof. Since u ∈ Xb, we know that there exists C > 0 such that |u(t)| ≤ Cebt. Therefore,
let v(t) = e−btu(t). Let s ≥ 0 (so real). Then v(0+) = u(0+) so we might be able to work with v
instead. Indeed, the Laplace transform of v exists and

sL v(s) =

ˆ ∞
0

sv(t)e−st dt = / y = st / =

ˆ ∞
0

v
(y
s

)
e−y dy.

Since |v(y/s)|e−y ≤ Ce−y for some constant C (this time v(t) = u(t)e−bt is bounded), it is clear
that

lim
s→∞

ˆ ∞
0

v
(y
s

)
e−y dy =

ˆ ∞
0

lim
s→∞

v
(y
s

)
e−y dy =

ˆ ∞
0

a e−y dy = a
[
−e−y

]∞
0

= a.
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Note now that

sL v(s) = sL(e−btu(t))(s) = sLu(s− b) = (s− b)Lu(s− b) + bLu(s− b),

so since Lu(s)→ 0 as s→∞, we obtain that

lim
s→∞

sL v(s) = lim
s→∞

(s+ b)Lu(s+ b) = lim
s→∞

sLu(s),

which proves that lim
s→∞

sLu(s) = a.

In the previous two theorems, we assume that the limits exists for the result to hold. It can
be the case that the limit in the Laplace domain exists (and seems reasonable) but that the
limit in the time domain does not exist. This can obviously lead to erroneous deductions.

We assume that the limits exist!

10.5 More Examples

10.5.1 Convolution Equations

Solve the equations ˆ t

0

cos(t− τ)u(τ) dτ = f(t), t ≥ 0,

where
(a) f(t) = t sin t (b) f(t) = 1.

Example

Solution. The integral in question is a convolution of u(t) with cos t. Assuming that u ∈ Xa

for some a > 0, we take the Laplace transform of both sides in the equality to find that

s

s2 + 1
U(s) = L f(s).

If f(t) = t sin t, we obtain

L f(s) = − d

ds

(
1

s2 + 1

)
=

2s

(s2 + 1)2
,

so

U(s) =
2

s2 + 1
.

Since L(2 sin(t))(s) = U(s), the uniqueness result proves that u(t) = 2 sin t is the only solution
in Xa.
However, if f(t) = 1, we find that

s

s2 + 1
U(s) =

1

s
⇔ U(s) =

s2 + 1

s2
= 1 +

1

s2
.

Now L(t) = s−2, but what would have the Laplace transform 1? It turns out that there’s no
such function (recall that Lu(s) → 0 as |s| → ∞ if u ∈ Xa). We can’t find a solution in this
case. Plugging the equation into some algebra system might give you the answer u(t) = t+δ(t),
whatever that might mean...
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10.5.2 Power Series

Since it is allowed to integrate a power series termwise (if we’re inside the radius of conver-
gence), we can sometimes find the Laplace transform for a function by using a power series
representation. It is straight forward to prove that

L(tm) =
m!

sm+1
, Re s > 0,

by either using direct calculation and partial integration or by writing tmH(t) and using the
time multiplication theorem. So if we integrate termwise, we can take the Laplace transform
of tm and then calculate the series.

Find the Laplace transform of u(t) = sinc(t) =
sin t

t
, t > 0.

Example

Solution. We have

sinc(t) =
1

t
sin t =

∞∑
k=0

(−1)kt2k

(2k + 1)!
, t ∈ R.

Hence

L(sinc(t)) =
∞∑
k=0

(−1)k L(t2k)(s)

(2k + 1)!
=
∞∑
k=0

(−1)k(2k)!

s2k+1(2k + 1)!
=
∞∑
k=0

(−1)k

s2k+1(2k + 1)
,

which is the Maclaurin series for arctan

(
1

s

)
. Therefore we have just proved that

L(sinc(t)) = arctan

(
1

s

)
, Re s > 1

where we leave the difficulties of interpreting this for s ∈ C to some other course.

10.5.3 Bessel Functions

A Bessel function of order ν solves Bessel’s differential equation:

x2y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0.

These are usually denoted by Jν(x).

Find the Laplace transform of the solution J0(x) for x ≥ 0 such that J0(1) = 1.

Example
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Solution. Letting ν = 0 and assuming that x > 0, we find that

xy′′(x) + y′(x) + xy(x) = 0.

Assuming that y, y′ ∈ Xa for some a > 0, we can take the Laplace transform:

− d

ds
L(y′′)(s) + sY (s)− y(0)− d

ds
Y (s) = 0

⇔ − d

ds

(
s2Y (s)− sy(0)− y′(0)

)
+ sY (s)− y(0)− Y ′(s) = 0

⇔ −2sY (s)− s2Y ′(s) + y(0) + sY (s)− y(0)− Y ′(s) = 0

⇔ 0 = sY (s) + (s2 + 1)Y ′(s) ⇔ Y ′(s) +
s

s2 + 1
Y (s) = 0.

Now assume for a moment that s is real. Then we can multiply with the integrating factor

exp

(
1

2
ln(s2 + 1)

)
=
(
1 + s2

)1/2

so that

Y ′(s) +
s

s2 + 1
Y (s) = 0 ⇔ d

ds

(
Y (s)

(
1 + s2

)1/2
)

= 0 ⇔ Y (s) =
C

(1 + s2)1/2
.

To find the value of C, consider the limit theorem from above (assuming that y is continuous):

1 = y(0) = lim
R3s→∞

sY (s) = lim
R3s→∞

C
s

(1 + s2)1/2
= C.

Hence

L J0(s) =
1

(1 + s2)1/2
,

leaving it to a different course how to define this for s ∈ C.

10.5.4 Linear Systems of Differential Equations

Suppose that we want to solve, for t > 0,{
x′1(t) = 4x1(t)− 2x2(t) + et,

x′2(t) = 3x1(t)− 3x2(t) + et,

where x1(0) = 2/3 and x2(0) = −2. Taking the Laplace transform, we obtain that
sX1(s)− 2

3
= 4X1(s)− 2X2(s) +

1

s− 1
,

sX2(s) + 2 = 3X1(s)− 3X2(s) +
1

s− 1
,
⇔


(s− 4)X1(s) + 2X2(s) =

2

3
+

1

s− 1
,

−3X1(s) + (s+ 3)X2(s) = −2 +
1

s− 1
.

Let

A(s) =

(
s− 4 2
−3 s+ 3

)
, X(s) =

(
X1(s)
X2(s)

)
and b(s) =

(
2/3 + 1/(s− 1)
−2 + 1/(s− 1)

)
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so A(s)X(s) = b(s). Assuming that detA 6= 0, we have

X(s) = A−1b(s) =
1

(s− 4)(s+ 3) + 6

(
s+ 3 −2

3 s− 4

)(
2/3 + 1/(s− 1)
−2 + 1/(s− 1)

)

=
1

(s− 3)(s+ 2)

 2s2 + 19s− 15

3(s+ 2)
−2s+ 11

 .

To find something that transforms to this vector, we use a partial fractions decomposition to
see that

X1(s) =
−1/3

s− 1
+
−1

s+ 2
+

2

s− 3
and X2(s) =

−3

s+ 2
+

1

s− 3
.

Noting that

L
(
−1

3
et − e−2t + 2e3t

)
= X1(s) and L

(
−3e−2t + 2e3t

)
= X2(s),

we claim that the unique solution in Xa to the problem is given byx1(t) = −1

3
et − e−2t + 2e3t,

x2(t) = −3e−2t + 2e3t.

Plugging this into the differential equation also shows that this actually is a solution.
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Chapter 11

The Unilateral Z-transform

“Go ahead. Won’t show on this shirt”
—Ben Richards

11.1 Complex Power Series

Let u0, u1, u2, . . . be a sequence of complex numbers. We will use the notation u[k] = uk. The
square brackets indicate that the function u : N → C is defined on the natural numbers N
(which includes zero in this setting). The power series corresponding to this sequence is
defined by

∞∑
k=0

u[k]zk = lim
n→∞

n∑
k=0

u[k]zk,

whenever this limit exists. So it is a sequence of complex numbers and convergence is defined
on C as expected (we’ve used this implicitly already throughout the course).

Theorem. A complex power series has a radius of convergence R such that
∞∑
k=0

u[k]zk is

absolutely convergent if |z| < R and divergent if |z| > R.

Existence

The behavior when |z| = R (meaning all points in C of the form Reiθ) is not known at this
point (and we will not delve deeper into this subject in this course).
As usual, we find the region of convergence by Cauchy’s root-test (or de’Alemberts ratio test).
The root-test states that if

lim sup
k→∞

∣∣u[k]zk
∣∣1/k < 1, (11.1)

then
∞∑
k=0

u[k]zk is absolutely convergent, and if the limit is > 1, then the series is divergent. In

the case when
lim
k→∞

∣∣u[k]zk
∣∣1/k

exists, this limit is equal to the left-hand side of (11.1) above. We actually find the region of
convergence by first calculating the limit and then solving for |z|. Why involve the weird limes
superior? Well, this expression always exist, so that’s basically what’s needed to ensure that
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we always have a region of convergence (even if the regular limit doesn’t exist like in the case
of a sum of geometric series’ with different quotient). If xn is a sequence of real numbers, we
define lim sup

n→∞
xn by

lim sup
n→∞

xn = lim
n→∞

(
sup
m≥n

xm

)
.

Note that this expression always exist (although it might be +∞) since it is the limit of a
decreasing sequence. As an example, consider the two functions below. The dotted curve is the
sequence xn and the blue curve is sup

m≥n
xm, that is, the smallest upper bound to xm for m ≥ n.

n

y

Theorem. If
∞∑
k=0

u[k]zk =
∞∑
k=0

v[k]zk for |z| < R, where R is some positive constant,

then u[k] = v[k] for k = 0, 1, 2, . . .

Uniqueness

Basically this means that if two power series converge to the same function in some open disc,
then all the coefficients must be equal. This is a very useful result.

11.1.1 Uniform Convergence

We’ve seen in courses previously that you may differentiate (and integrate) power series termwise.
The reason for this is basically that they converge uniformly. To see why the convergence
is uniform for |z| ≤ r < R, note the following. Choose some r0 such that r < r0 < R.
Since lim sup

k→∞
|u[k]zk|1/k < 1, there exists some integer N > 0 such that

k ≥ N ⇒ |u[k]zk|1/k ≤ r

r0

.

So for k ≥ N (and z 6= 0), we have

|u[k]zk|1/k ≤ r

r0

⇔ |u[k]zk| ≤
(
r

r0

)k
.
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Since r < r0 < R, letting ρ = r/r0 we see that 0 < ρ < 1 and that

|u[k]zk| ≤ ρk, k ≥ N.

Thus
∞∑
k=0

|u[k]zk| ≤
N−1∑
k=0

|u[k]|rk +
∞∑
k=N

ρk <∞,

so by Weierstrass’ M-test, the convergence is uniform. So does this mean we can differentiate
termwise? Not exactly. However, considering the series of the termwise derivative we see that
this also is a power series and that

∞∑
k=1

ku[k]zk−1 = z−1

∞∑
k=0

ku[k]zk.

Note that

|ku[k]zk|1/k = k1/k |u[k]zk|1/k

and since k1/k → 1 as k →∞ it is clear that

lim sup
k→∞

|ku[k]zk|1/k = lim sup
k→∞

|u[k]zk|1/k,

so we will obtain the same radius of convergence. Obviously the series of the derivatives also
converge uniformly, so yes, we are allowed to differentiate termwise for a power series. Awesome!

11.2 The Unilateral Z transform

Definition. For a sequence u[k], k = 0, 1, 2, . . ., we define the Z transform of u by

Z(u)(z) =
∞∑
k=0

u[k] z−k,

whenever the series is convergent.

The unilateral Z transform

We note immediately that this is a power series in the variable z−1. This means that the series
has a radius of convergence, but that the series is convergent outside a circle with this radius.
We have the following result.

Theorem. For a sequence u[k], k = 0, 1, 2, . . ., the Z transform Z u(z) has a region of
convergence defined by the radius of convergence R such that Z u(z) is absolutely (uniformly)
convergent for |z| > R and divergent for |z| < R. It is possible that R = 0.

Region of convergence
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Proof. This result follows from the existence result for power series by letting w = z−1 and

considering
∞∑
k=0

u[k]wk.

Re

Im

Z u(z) converges here

R

The geometric series
∞∑
k=0

z−k converges if |z−1| < 1 and diverges if |z−1| > 1. If |z| > 1, we

have
∞∑
k=0

z−k =
1

1− z−1
=

z

z − 1
.

Example

Definition. We define the discrete impulse function δ[n] by δ[n] = 1 if n = 0 and δ[n] = 0
if n 6= 0. The discrete Heaviside function H[n] is defined by H[n] = 1 if n ≥ 0 and H[n] = 0
if n < 0.

Impulse function and discrete Heaviside

Find the Z transform of u[n] = δ[n].

Example

Solution. Obviously Z(δ[n])(z) = 1.

Find the Z transform of u[k] = 1, k = 0, 1, 2, . . .

Example
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Solution. We find that

Z u(z) =
∞∑
k=0

1

zk
=

1

1− z−1
=

z

z − 1
, |z| > 1,

since this is a geometric series. Note that this is the Z transform of H[k].

Find the Z transform of u[k] = k, k = 0, 1, 2, . . .

Example

Solution. We find that

Z u(z) =
∞∑
k=0

k

zk
= −z d

dz

∞∑
k=0

1

zk
= −z d

dz

z

z − 1
=

z

(z − 1)2
, |z| > 1,

since this is the derivative of a geometric series (remember TATA42?).

Find the Z transform for u[k] =
1

k!
.

Example

Solution. We identify the coefficients in the Z transform as those of the Maclaurin series for
the exponential function, so

∞∑
k=0

1

k!
z−k =

∞∑
k=0

1

k!

(
1

z

)k
= e1/z.

11.3 Rules for the Z Transform

Theorem. Suppose that Z u(z) and Z v(z) exists for |z| > R. Then

Z
(
c1u[k] + c2v[k]

)
(z) = c1Z u(z) + c2Z v(z), |z| > R.

Linearity

Proof. Let Z u(z) and Z v(z) have the radius of convergence Ru and Rv respectively. By
defining R = max{Ru, Rv}, the linearity follows since the summation is linear when all the
sums are convergent.

Theorem. If a 6= 0, then Z(aku[k])(z) = Z(u[k])
(z
a

)
.

Geometric multiplier

Proof. Taking the Z-transform, we find that

Z(aku[k])(z) =
∞∑
k=0

aku[k]z−k =
∞∑
k=0

u[k]
(z
a

)−k
= Z u

(z
a

)
,

under the condition that |z| > |a|R where R > 0 is the radius of convergence for Z u(z).
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Show that Z(ak) =
z

z − a
, |z| > |a|.

Example

Solution. Recall that Z(H) =
z

z − 1
, so by the previous result we obtain that

Z(ak) = Z(akH(k)) =
z/a

z/a− 1
=

z

z − a
, |z| > |a|.

Find the Z-transforms for cos kα and sin kα.

Example

Solution. Using Euler’s equations, we find that

Z
(
eikα + e−ikα

2

)
=

1

2

(
z

z − eiα
+

z

z − e−iα

)
=

1

2

(
z(z − e−iα) + z(z − eiα)

(z − eiα)(z − e−iα)

)
=

1

2

(
2z2 − z(e−iα + eiα)

z2 − z(eiα + e−iα) + 1

)
=

z2 − z cosα

z2 − 2z cosα + 1
,

since Z(ak) = z/(z − a) for a ∈ C (a 6= 0). Analogously,

Z
(
eikα − e−ikα

2i

)
=

1

2i

(
z

z − eiα
− z

z − e−iα

)
=

1

2i

(
z(z − e−iα)− z(z − eiα)

(z − eiα)(z − e−iα)

)
=

1

2i

(
z(eiα − e−iα)

z2 − z(eiα + e−iα) + 1

)
=

z sinα

z2 − 2z cosα + 1
.

In both cases we have |z| > 1.

Theorem. Z(u[k])(z) = Z(u[k])(z)

Conjugation

Proof. Clearly

Z(u[k])(z) =
∞∑
k=0

u[k]z−k =
∞∑
k=0

u[k]z−k =
∞∑
k=0

u[k]z−k = Z(u[k])(z)

for |z| > R.

11.3.1 Time Shifts

One of the major uses for the Z-transform is its ability to handle delayed signals, meaning
expressions of the type u[k − 1] etc where we need the value at the previous time step. A
special case of this occurs when solving difference equations (we’ll see that below).
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Theorem. For m > 0 an integer,

(i) Z(u[k +m])(z) = zmZ(u[k])(z)−
m−1∑
k=0

u[l]zm−k,

(ii) Z(u[k − m])(z) = z−mZ(u[k])(z) +
−1∑

k=−m

u[k]z−(m+k) (assuming that u is defined for

these values) and

(iii) Z(u[k −m]H[n−m])(z) = z−mZ(u[k])(z).

Time shift

Proof. We obtain these results by reindexing the series’.

(i)

Z(u[k +m])(z) =
∞∑
k=0

u[k +m]z−k =
∞∑
k=m

u[k]z−(k−m) = zm
∞∑
k=m

u[k]z−k

= zm

(
∞∑
k=0

u[k]z−k −
m−1∑
k=0

u[k]z−k

)
= zmZ u(z)−

m−1∑
k=0

u[k]zm−k

(ii)

Z(u[k −m])(z) =
∞∑
k=0

u[k −m]z−k =
∞∑

k=−m

u[k]z−k−m = z−m
∞∑

k=−m

u[k]z−k

= z−m

(
−1∑

k=−m

u[k]z−k +
∞∑
k=0

u[k]z−k

)
= z−mZ u(z) +

−1∑
k=−m

u[k]z−m−k

(iii)

Z(u[k −m]H[k −m])(z) =
∞∑
k=0

u[k −m]H[k −m]z−k =
∞∑

k=−m

u[k]H[k]z−k−m

= z−m
∞∑
k=0

u[k]z−k = z−mZ u(z).

Difference Equations

One of the major uses for the (unilateral) Z-transform is solving linear difference equations.

Find a solution to 2u[k + 1]− u[k] = 1, k = 0, 1, 2, . . ., u[0] = 2.

Example
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Solution. Taking the Z-transform, we find that for |z| > 1,

2(zU(z)− zu[0])− U(z) =
z

z − 1
⇔ (2z − 1)U(z) = 4z +

z

z − 1

⇔ U(z) =
4z

2z − 1
− z

(z − 1)(2z − 1)
.

Using partial fractions, we obtain

U(z) =
4z

2z − 1
+

1

z

(
z

z − 1
− 2z

2z − 1

)
.

Thus we expect that

u[k] = 2 · 2−k +H[k − 1]

(
1−

(
1

2

)k−1
)

= 21−k +H[k − 1]
(
1− 21−k) .

For k ≥ 1 we have 21−k + 1 − 21−k = 1 and for k = 0 we have u[0] = 2. Therefore we obtain
that u[k] = 1 for k = 1, 2, 3, . . . and u[0] = 2. Verify directly!

Find a solution to u[k + 2] + u[k + 1]− 2u[k] = 3δ[k], k = 0, 1, 2, . . ., u[0] = 0 and u[1] = 3.

Example

Solution. Taking the Z-transform, we find that

z2U(z)− z2u[0]− zu[1] + zU(z)− zu[0]− 2U(z) = 3 ⇔ (z2 + z − 2)U(z) = 3 + 3z

⇔ U(z) =
3 + 3z

z2 + z − 2
,

at least if |z| > 1. Why? Well, z2 + z− 2 = (z+ 2)(z− 1) so we have poles at −2 and 1 (zeroes
of the polynomial in the denominator). Decomposing by partial fractions and reformulating
slightly, we find that

U(z) =
1

z + 2
+

2

z − 1
=

1

z

z

z + 2
+

1

z

2z

z − 1
.

Similar to the previous example, we obtain that

u[k] = (−2)k−1H(k − 1) + 2H[k − 1]H[k − 1] =

{
(−2)k−1 + 2, for k ≥ 1,

0, for k = 0.

Verifying, we see that for k = 0:

u[0 + 2] + u[0 + 1]− 2u[0] = (−2)1 + 2 + 3− 2 · 0 = 3,

for k = 1:
u[1 + 2] + u[1 + 1]− 2u[1] = (−2)2 + 2 + (−2)1 + 2− 2 · 3 = 0,

and for k ≥ 2:

u[k + 2] + u[k + 1]− 2u[k] = (−2)k+1 + 2 + (−2)k + 2− 2 ·
(
(−2)k−1 + 2

)
= (−2)k+1 + (−2)k + (−2)k = (−2)k(−2 + 2) = 0.
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11.3.2 Derivatives

Theorem. Suppose that Z u(z) converges for |z| > R. Then Z(ku[k])(z) = −z d
dz
Z(u[k])(z)

for |z| > R.

Proof. We see that

Z u(z) =
∞∑
k=0

u[k]kz−k = −z
∞∑
k=0

u[k]
d

dz
z−k

=
/

uniform convergence
/

= −z d
dz

∞∑
k=0

u[k]z−k = −z d
dz
Z u(z), |z| > R,

where some care is needed since this is a complex derivative.

For a ∈ C, a 6= 0, show that for |z| > |a|,

Z(ak)(z) =
z

z − a
, Z(kak)(z) =

az

(z − a)2
and Z(k2ak)(z) =

az2 + a2z

(z − a)3
.

Example

Solution. We find that

Z(ak)(z) =
∞∑
k=0

akz−k =
∞∑
k=0

(a
z

)k
=

1

1− az−1
=

z

z − a
, |z| > |a|.

From this it follows that

Z(kak)(z) = −z d
dz
Z(ak)(z) = −z d

dz

z

z − a
=

az

(z − a)2

and that

Z(k2ak)(z) = −z d
dz
Z(kak)(z) = −z d

dz

(
−z d

dz
Z(ak)(z)

)
= −z d

dz

az

(z − a)2
=
a2z + a2z

(z − a)3
.

11.3.3 Binomial Coefficients

Remember that the binomial coefficients were defined by(
k
m

)
=

k!

(k −m)!m!
, k = 0, 1, 2, . . . , m = 0, 1, 2, . . . , k.

For k < m, we let

(
k
m

)
= 0 (this might be new).
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Theorem. Z
((

k
m

)
ak
)

(z) =
amz

(z − a)m+1
, m = 0, 1, 2, . . ., |z| > |a|.

Proof. First, let’s consider the Z-transform of

(
k
m

)
for some fixed m:

Z
(

k
m

)
(z) =

∞∑
k=0

(
k
m

)
z−k =

1

m!

∞∑
k=m

k!

(k −m)!
z−k

=
1

m!

∞∑
k=m

k(k − 1)(k − 2) · · · (k −m+ 1)z−k

=
/
w = z−k

/
=

1

m!

∞∑
k=m

wm
dm

dwm
wk =

wm

m!

dm

dwm

∞∑
k=m

wk

=

/
dm

dwm

m−1∑
k=0

wk = 0

/
=
wm

m!

dm

dwm

∞∑
k=0

wk =
wm

m!

dm

dwm
1

1− w

=
wm

m!

m!

(1− w)m+1
=

wm

(1− w)m+1
=

z

(z − 1)m+1
.

From this it follows that

Z
((

k
m

)
ak
)

(z) =
z/a

(z/a− 1)m+1
=

amz

(z − a)m+1
.

Corollary. Z
((

k + n
m

)
ak
)

(z) =
am−nzn+1

(z − a)m+1
, m = 1, 2, 3, . . ., n = 0, 1, . . . ,m− 1.

Proof. Since

(
l
m

)
= 0 for l < m, it follows that

Z
((

k + n
m

)
ak
)

(z) = a−nZ
((

k + n
m

)
ak+n

)
(z) = a−nznZ

((
k
m

)
ak
)

(z)

= a−nzn
amz

(z − a)m+1
=

am−nzn+1

(z − a)m+1
.

Find a solution to 4u[k+ 2]− 4u[k+ 1] + u[k] = 4 · 2−k, k = 0, 1, 2, . . ., u[0] = 1 and u[1] = 1.

Example
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Solution. Taking the Z-transform of both sides of the equation, we find that for |z| > 1/2,

4
(
z2U(z)− z2u[0]− zu[1]

)
− 4 (zU(z)− zu[0]) + U(z) =

4z

z − 1
2

⇔ (4z2 − 4z + 1)U(z) =
4z

z − 1
2

+ 4z2

⇔ U(z) =
z(

z − 1
2

)3 +
z2(

z − 1
2

)2 = 4
2−2z(
z − 1

2

)3 +
z2(

z − 1
2

)2 .

By the previous corollary, we know that

Z
((

k
2

)
ak
)

(z) =
a2z

(z − a)3
and Z

((
k + 1

1

)
ak
)

(z) =
z2

(z − a)2
,

so by linearity we expect that

u[k] = 4

(
k
2

)
2−k +

(
k + 1

1

)
2−k = (2k(k − 1) + (k + 1)) 2−k =

(
2k2 − k + 1

)
2−k,

for k = 2, 3, 4, . . ., solves the equation.
Verifying, we see that for k = 0:

4u[0 + 2]− 4u[0 + 1] + u[0] = 7− 4 + 1 = 4,

for k = 1:
u[1 + 2] + u[1 + 1]− 2u[1] = 8− 7 + 1 = 2 = 4 · 2−1,

and for k ≥ 2:
u[k + 2] + u[k + 1]− 2u[k] = · · · = 4 · 2−k.
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Chapter 12

Inversion, Convolution and Bilateral
Transforms

“I let him go.”
—John Matrix

12.1 Inversion

We first note that the uniqueness of a power series representation (there’s only one Maclaurin
series) means that we have the following result.

Theorem. Suppose that u[k] and v[k] have the same Z-transform, that is, Z u(z) = Z v(z)
for all |z| > R for some R > 0. Then u[k] = v[k] for k = 0, 1, 2, . . .

Uniqueness of the Z-transform

For a given Z-transform U(z), we typically find u[k] as we did for the Laplace transform, meaning
that we need to rewrite U(z) until we can find the components in a table. The uniqueness then
proves that the answer is the only possibility. There is an inversion formula as well, that looks
like this:

u[k] =
1

2πi

˛
γ

zk−1U(z) dz,

where γ is a closed curve completely inside the region of converges that loops once around the
origin with positive orientation (counter clockwise). Choosing some r > R, where R is the
radius of convergence of U(z), and letting γ be the closed circle with center at the origin and
radius r, i.e., z = reiθ with 0 ≤ θ ≤ 2π, parametrizing the integral above we obtain that

u[k] =
1

2πi

ˆ 2π

0

rk−1ei(k−1)θ U(reiθ)rieiθ dθ =
1

2π

ˆ 2π

0

rkeikθ U(reiθ) dθ.

Why does this work? Since U(z) is a power series, we are allowed to integrate termwise:

1

2π

ˆ 2π

0

rkeikθ U(reiθ) dθ =
1

2π

ˆ 2π

0

rkeikθ

(
∞∑
m=0

u[m]r−me−imθ

)
dθ

=
1

2π

∞∑
m=0

rk−mu[m]

ˆ 2π

0

ei(k−m)θ dθ =
1

2π
r0u[k] · 2π = u[k],
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since

ˆ 2π

0

ei(k−m)θ dθ = 0 if k 6= m.

This result implies the following theorem. Note that we need a condition for the behavior of U
“at infinity.”

Theorem. Suppose that U(z) is analytic for |z| > R, where R > 0 is some constant.
If lim|z|→∞ U(z) = A for some A ∈ C, then there exists a unique function u : N → C such
that Z u(z) = U(z) for |z| > R.

Suppose that U(z) = log(1 + z−1), |z| > 1. Is there some u[k] such that U(z) = Z u(z)?

Example

Solution. So U(z) is a bit problematic if you haven’t studied complex analysis, but let’s ignore
that and just work with this formally. Remember that the Maclaurin series is given by

log(1 + z−1) =
∞∑
k=1

(−1)k

k
z−k, |z| > 1,

so from this it is clear that u[k] =
(−1)k

k
for k = 1, 2, 3, . . . By uniqueness, this is the only

possibility. Note that U(z)→ 0 as |z| → ∞.

12.2 Discrete Convolution

Definition. For u, v : Z→ C, we define the convolution u ∗ v by

u ∗ v[n] =
∞∑

k=−∞

u[k]v[n− k],

whenever this series exists.

So an obvious question is when this limit exists.

Theorem. If u, v ∈ l1, then u ∗ v ∈ l1.
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Proof. We first prove that u ∗ v is absolutely integrable:

∞∑
n=−∞

|u ∗ v[n]| =
∞∑

n=−∞

∣∣∣∣∣
∞∑

k=−∞

u[k]v[n− k]

∣∣∣∣∣ ≤
∞∑

n=−∞

∞∑
k=−∞

|u[k]||v[n− k]|

=
∞∑

k=−∞

∞∑
n=−∞

|u[k]||v[n− k]| =
∞∑

k=−∞

|u[k]|
∞∑

n=−∞

|v[n− k]|

Note now that
∞∑

n=−∞

|v[n− k]| = / m = n− k / =
∞∑

m=−∞

|v[m]|,

so
∞∑

k=−∞

|u[k]|
∞∑

n=−∞

|v[n− k]| =

(
∞∑

k=−∞

|u[k]|

)(
∞∑

m=−∞

|v[m]|

)
<∞.

A more compact way of stating this result is that

‖u ∗ v‖l1(Z) ≤ ‖u‖l1(Z)‖v‖l1(Z).

The right-hand side is finite by assumption.

Did the proof look familiar? It should, go back to lecture 7 and see how we proved the analogous
result for the continuous convolution of L1-functions.
We will soon take a look at the Z-transform of a convolution, and since we’re only working with
the unilateral Z-transform, we can assume that u[k] = v[k] = 0 for k < 0. The convolution
reduces to

u ∗ v[n] =
n∑
k=0

u[k]v[n− k], n = 0, 1, 2, . . .

In this case, we can relax the conditions a bit and still obtain convergence.

Theorem. If u, v : N → C belong to Xa (meaning that |u[k]| ≤ Kak for some K > 0
and a > 0), then u ∗ v ∈ Xb for every b > a and

|u ∗ v[k]| ≤ C (k + 1) ak, k ≥ 0.

Furthermore,
Z(u ∗ v)(z) = Z u(z)Z v(z), |z| > a.

Unilateral convolution

Proof. By definition, |u[k]| ≤ C1a
k and |v[k]| ≤ C2a

k, so

|u ∗ v[n]| =

∣∣∣∣∣
n∑
k=0

u[k]v[n− k]

∣∣∣∣∣ ≤ / monotonicity / ≤
n∑
k=0

|u[k]||v[n− k]|

≤
n∑
k=0

C1a
kC2a

n−k = C1C2(n+ 1)an,

and since limn→∞ nδ
−n = 0 for any δ > 0, it follows that |u ∗ v[n]| ≤ Cbn for every b > a.
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So the convolution of u and v is defined and belongs to Xb. Taking the Z-transform, we observe
that

Z(u ∗ v)(z) =
∞∑
n=0

z−n
n∑
k=0

u[k]v[n− k] =
∞∑
n=0

n∑
k=0

z−ku[k]z−(n−k)v[n− k]

=
∞∑
k=0

z−ku[k]
∞∑
n=k

z−(n−k)v[n− k] = / n = m+ k / =
∞∑
k=0

z−ku[k]
∞∑
m=0

z−mv[m]

= Z v(z)
∞∑
k=0

z−ku[k] = Z v(z)Z u(z).

Show that Z

(
n∑
k=0

u[k]

)
(z) =

z

z − 1
Z u(z).

Example

Solution. Note that
n∑
k=0

u[k] =
n∑
k=0

u[k] · 1 =
n∑
k=0

u[k] ·H[n− k] = u ∗H[n],

so

Z

(
n∑
k=0

u[k]

)
= Z(u ∗H) = (Z u)(z) · z

z − 1
.

Solve the equation
n∑
k=0

u[k]3−k = 6−n, n = 0, 1, 2, . . .

Example

Solution. Note that we can reformulate the equation as

n∑
k=0

u[k]3−k = 6−n ⇔
n∑
k=0

u[k]3n−k = 6−n · 3n = 2−n.

Taking the Z-transform, we obtain that

Z u(z)Z(3kH[k])(z) =
z

z − 1
2

⇔ U(z)
z

z − 3
=

z

z − 1
2

for |z| > 1

2
. Hence

U(z) =
z − 3

z − 1
2

= 1− 5/2

z − 1
2

= 1− 5

2

1

z

z

z − 1
2

.

Therefore it follows that

u[k] = δ[k]− 5

2

(
1

2

)k−1

H[k − 1],

so u[0] = 1 and u[k] = 5 · 2−k for k ≥ 1.
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12.3 Limit Results

Theorem. If there exists some R > 0 such that Z u(z) exists for |z| > R, then

lim
|z|→∞

Z u(z) = u[0].

Initial value theorem

Proof. Let |z| > R and put w = z−1. Then |w| < R and if |z| → ∞ then w → 0. Since Z u(z)
converges uniformly for |z| > R, it follows that

f(w) =
∞∑
k=0

u[k]wk

also converges uniformly, so f is a continuous function for |w| < R. Hence lim
w→0

f(w) = u[0] and

obviously this limit is the same as lim
|z|→∞

Z u(z).

12.4 The Bilateral Z-transform

Let l1(Z) be the space of functions u : Z→ C such that

∞∑
k=−∞

|u[k]| <∞,

meaning that the sequence is absolutely summable. For functions from this class, we define the
bilateral Z-transform by

Z u(z) =
∞∑

k=−∞

u[k]z−k.

The theory is similar to the unilateral transform, but some things change. The region of
convergence is not only outside of a disc in this case, but also inside another disc (ideally one
that’s larger..). Hence the region of convergence looks something like this.
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Re

Im

Z u(z) converges here

R− R+

Let u[k] = ak for k < 0 and u[k] = bk for k ≥ 0. Find Z u(z). When does the transform
exist?

Example

Solution. We find that

Z u(z) =
−1∑

k=−∞

akz−k +
∞∑
k=0

bkz−k =
∞∑
k=1

a−kzk +
1

1− b/z
=
z

a

1

1− z/a
+

z

z − b

=
z

a− z
+

z

z − b
,

if |b| < |z| < |a|.
Inversion works analogously with the unilateral case, making sure that the integration contour
is between the two circles.

12.5 The Discrete Time Fourier Transform (DTFT)

By considering z = eiω, the bilateral Z-transform of u ∈ l1(Z) takes the form

Z u(eiω) =
∞∑

k=−∞

u[k]e−ikω,

which is an absolutely convergent series since u ∈ l1(Z). We define the discrete time Fourier
transform (DTFT) as this expression:

F u(ω) =
∞∑

k=−∞

u[k]e−ikω.
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In a sense, this is the Fourier transform of a function u : Z → C. Clearly F u is continuous
on R, being the uniformly convergent sum of continuous functions, and it is also 2π-periodic:

F u(ω + 2π) =
∞∑

k=−∞

u[k]e−ik(ω+2π) =
∞∑

k=−∞

u[k]e−ikω = F u(ω),

since this is true for the exponentials in the sum. Moreover, for u ∈ l1(Z), the analogous
argument with the inversion of the Z-transform shows that

u[k] =
1

2π

ˆ 2π

0

F u(ω)eiωk dω, k ∈ Z.

Prove this!

12.5.1 Connection with Fourier Series

Notice that since F u(ω) is 2π-periodic and continuous, a natural question would be what the
Fourier series looks like. Indeed, the Fourier series of F u is connected with u in the following
sense. Suppose that u ∈ l1(Z) and let U(ω) = F u(ω). Then U has the Fourier series

U(ω) ∼
∞∑

k=−∞

u[−k]eikω,

and if u ∈ E is continuous and 2π-periodic with

u(x) ∼
∞∑

k=−∞

U [k]eikω,

then F U(ω) = u(−ω) assuming that U ∈ l1(Z).

12.6 The Discrete Fourier Transform (DFT)

In the case when a function u : Z→ C is periodic, meaning that there exists some integer K > 0
such that u[k+K] = u[k] for every k ∈ Z, we can define a variation of the Fourier transform by
considering only one period and restricting ourselves to integer values. This variation is usually
referred to as the discrete Fourier transform (DFT):

F u[n] =
K−1∑
k=0

u[k]e−2πink/K , n ∈ Z.

Clearly F u is periodic: F u[n+K] = F u[n], since

F u[n+K] =
K−1∑
k=0

u[k]e−2πi(n+K)k/K =
K−1∑
k=0

u[k]e−2πink/Ke−2πik =
K−1∑
k=0

u[k]e−2πink/K

= F u[n].

Moreover, since both u and n 7→ e2πink/K (for fixed k) are K-periodic, it follows that

F u[n] =
M+K−1∑
k=M

u[k]e−2πink/K , n ∈ Z,
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for any integer M . Note also that the numbers ωk = e−2πik/K are the unit roots, meaning that
for k = 0, 1, 2, . . . , K − 1, these numbers are the solutions to the binomial equation zK = 1.
The inversion of the discrete Fourier transform is easily carried out by

F−1 v[n] =
1

K

K−1∑
k=0

v[k]e2πink/K , n ∈ Z. (12.1)

In the case when we have a function u : {0, 1, 2, . . . , K − 1} → C, we proceed like we did when
working with Fourier series by considering the periodic extension of u. In this was we can
consider the Fourier transform of functions defined on discrete sets. When working with the
Fourier transform in applications, this is usually the setting we end up in. Obviously there are
a lot of questions as to how the DFT is connected with both the DTFT and the regular Fourier
transform on R, but we will not get into these at this point. There are several extremely useful
results with regards to sampling of signals that you will see in a course in signal processing.

12.6.1 Circular Convolution

Recall that the previously studied transforms had the nice property that convolutions usually
ended up being the product of the transforms of the factors in the convolution. For the DFT,
we basically do this “backwards,” meaning that we define an operation ? by

(u ? v)[n] = F−1 (F uF v) [n].

This operation is usually referred to as circular convolution. Why circular? This is due to
the periodicity of the involved functions u and v when considered as defined on Z. Indeed,

(u ? v)[n] =
K−1∑
k=0

u[k] v[(n− k) mod K].

Here l mod K = l if 0 ≤ l < K and l mod K = l − mK if there exists an integer m such
that 0 ≤ l −mK < K.

12.6.2 Properties

Let U [n] = F u[n] and V [n] = F v[n]. Then the following properties hold.

(i) Reversal: U [K − n] = F(u[K − k])[n].

(ii) Conjugation: F(u)[n] = U [n].

(iii) Parseval’s identity:

1

K

K−1∑
k=0

U [k]V [k] =
K−1∑
k=0

u[k] v[k].

(iv) Multiplication: F(uv)[n] =
1

K
(F u ? F v)[n] (circular convolution).

(v) F2: F(F u)[n] = Ku[n].
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12.6.3 The Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is not yet another transform, but rather a particular
way of calculating the DFT. A naive implementation of the DFT shows that for each value n,
calculating F u[n] costs performing a sum of K multiplications. Since there are K unique values
for n, the costs of finding the complete DFT would be of order O(K2) (where the constant does
not depend on K). This would make finding the Fourier transform rather expensive if K is
large.
The revolutionary (it really was) idea of the FFT is to factor the problem into parts, solving
these recursively, and thereby obtaining a complexity of order O(K logK). This is a huge
gain. There are many different algorithms for calculating the DFT and those that has a time
complexity of order O(K logK) are referred to as FFT:s. Let’s take a look at one way of
handling the case when K = 2N is a power of 2. If the size is not a perfect power of 2, one can
use zero-padding, meaning that we extend u[k] by zero until we obtain K = 2N for some N .
How would that affect the DFT?

An example when K = 2N

Since K = 2N , we can split u[k] in two parts: when k = 2l is even and when k = 2l+ 1 is odd.
Note now that

F u[n] =

K/2−1∑
l=0

u[2l]e−i2πn(2l)/K +

K/2−1∑
l=0

u[2l + 1]e−i2πn(2l+1)/K

=

K/2−1∑
l=0

u[2l]e−i2πnl/(K/2) + e−i2πn/K
K/2−1∑
l=0

u[2l + 1]e−i2πnl/(K/2)

= F(u[2l])[n] + e−i2πn/K F(u[2l + 1])[n],

where the last equality assumes that 0 ≤ n ≤ K/2 − 1. For n ≥ K/2, let n = m + K/2
for m = 0, 1, . . . , K/2− 1. We see that

F u[m+K/2] =

K/2−1∑
l=0

u[2l]e−i2π(m+K/2)(2l)/K +

K/2−1∑
l=0

u[2l + 1]e−i2π(m+K/2)(2l+1)/K

= e−i2πm
K/2−1∑
l=0

u[2l]e−i2πml/(K/2) + e−i2π(m+K/2)/K

K/2−1∑
l=0

u[2l + 1]e−i2πml/(K/2)

= F(u[2l])[m]− e−i2πm/K F(u[2l + 1])[m].

Hence we have reduced the problem of calculating a DFT of size K to calculating two DFT:s
of size K/2. This type of recursion will yield a complexity of order O(K logK).

12.7 Exercises

1. Prove that

u ∈ l1(Z) ⇒ u[k] =
1

2π

ˆ 2π

0

F u(ω)eiωk dω, k ∈ Z.

2. Prove that u[k] = a|k| ∈ l1(Z) when |a| < 1 and find F u(ω).
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3. Prove the inversion formula for the DFT: equation 12.1.

4. Prove the formulas in Section 12.6.2.
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Chapter 13

Table of Formulæ

13.1 Notation and Definitions

• R is the set of all real numbers.

• Q is the set of all rational numbers.

• C is the set of all complex numbers.

• Z is the set of all integers.

• N = {0, 1, 2, . . .} is the set of all natural numbers.

For z = x+ iy ∈ C, x, y ∈ R,

Re z = x, Im z = y, |z| =
√
x2 + y2.

13.1.1 Continuity and Differentiability

• One-sided limits:
u(x±) = lim

x→x±
u(x).

• One-sided derivatives:

D±u(x) = lim
h→0±

u(x+ h)− u(x)

h

• C(I): The set of all continuous functions on a set I.

• Cm(I): The set of all continuously differentiable (up to order m) functions on a set I.

A function u : I → C on an interval I is called piecewise continuous if...

• I is finite and there are a finite number of points such that u is continuous everywhere
on I except for at these points. Moreover, if c ∈ I is a point where u is discontinuous,
the limits

lim
I3x→c−

u(x) and lim
I3x→c+

u(x)

exist (only u(c−) or u(c+) if points on the boundary of I).

• I is infinite and there a finite number of exception points (as in the finite case) in each
finite sub-interval of I.
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13.1.2 Function Spaces

A normed linear space is a linear space V endowed with a norm ‖ · ‖ : V → [0,∞[ such that

(i) ‖u‖ ≥ 0 (ii) ‖αu‖ = |α|‖u‖, α ∈ C (iii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

An inner product 〈 · , · 〉 : V × V → C on a vector space V satisfies

(i) 〈u, v〉 = 〈v, u〉 (ii) 〈u+ v, w〉 = 〈u, w〉+ 〈v, w〉 (iii) 〈αu, v〉 = α 〈u, v〉

(iv) 〈u, u〉 ≥ 0 (v) 〈u, u〉 = 0 ⇔ u = 0.

In an inner product space, we use ‖u‖ =
√
〈u, u〉 as the norm.

Sequence Spaces

The sequence spaces lp, 1 ≤ p ≤ ∞ consists of sequences (x1, x2, x3, . . .), xi ∈ C, such that the
norm

‖x‖lp =

(
∞∑
k=1

|xk|p
)1/p

<∞, 1 ≤ p <∞,

or
‖x‖l∞ = sup

k≥1
|xk| <∞.

Sometimes lp(N). The spaces lp(Z) are defined analogously. Only l2 is an inner product space
with

〈x, y〉 =
∞∑
k=1

xkyk, x, y ∈ l2.

Lebesgue Spaces (integrable functions)

We define the space L1(a, b) of absolutely integrable functions u : ]a, b[→ C with norm

‖f‖L1(a,b) =

ˆ b

a

|f(x)| dx <∞.

The space L2(a, b) consists of all “square integrable” functions with the norm

‖f‖L2(a,b) =

(ˆ b

a

|f(x)|2 dx
)1/2

<∞.

This space is an inner product space with

〈f, g〉 =

ˆ b

a

f(x)g(x) dx.

The space L∞(a, b) of bounded functions with norm

‖f‖L∞(a,b) = sup
a≤x≤b

|f(x)| <∞.

Note that a = −∞ and/or b =∞ is allowed and we then write Lp(R). Sometimes we write ‖f‖p
instead of ‖f‖Lp(a,b).
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Spaces of Piecewise Functions

• E[a, b] (or E): The linear space of all piecewise continuous functions on an interval [a, b].

• E ′[a, b] (or E ′): The linear space of those u ∈ E[a, b] such that D−u(x) exists for a < x ≤ b
and that D+u(x) exists for a ≤ x < b.

• G(R) (or G): The linear space of all piecewise continuous functions on R that are abso-
lutely integrable on R.

13.1.3 Special Functions

• Heaviside function:

H(x) =

{
0, x < 0,

1, x ≥ 0.

• Signum function:

sgn(x) =


−1, x < 0,

0, x = 0,

1, x > 0.

Discrete Functions

• Discrete Heaviside function:

H[k] =

{
0, k < 0,

1, k ≥ 0.

• Discrete impulse function:

δ[k] =

{
0, k 6= 0,

1, k = 0.

• Binomial coefficient functions:(
n
k

)
=

{
n!

(n−k)! k!
, k = 0, 1, 2, . . . ,

0, k > n.

Convolutions (on R)

The convolution u ∗ v : R→ C of two functions u : R→ C and v : R→ C is defined by

(u ∗ v)(x) =

ˆ ∞
−∞

u(t)v(x− t) dt, x ∈ R,

whenever this integral exists. If u, v ∈ G(R), then u ∗ v ∈ G(R).
Suppose that u, v, w ∈ G(R). Then the convolution has the following properties.

• Associative: (u ∗ v) ∗ w(x) = u ∗ (v ∗ w)(x).

• Distributive: (u+ v) ∗ w(x) = u ∗ w(x) + v ∗ w(x).

• Commutative: u ∗ v(x) = v ∗ u(x).
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Convolutions (on Z)

• For u, v : Z→ C, the discrete convolution u ∗ v is

u ∗ v[n] =
∞∑

k=−∞

u[k]v[n− k],

whenever this series exists.

• For u, v : N→ C, the unilateral (or one-sided) discrete convolution u ∗ v is

u ∗ v[n] =
n∑
k=0

u[k]v[n− k], n = 0, 1, 2, . . .

13.1.4 Inequalities

• The Cauchy-Schwarz inequality: If u, v ∈ V and V is an inner product space, then

| 〈u, v〉 | ≤ ‖u‖‖v‖.

• Bessel’s inequality: Let V be an inner product space, let v ∈ V and let {e1, e2, . . .} be
an ON system in V . Then

∞∑
k=1

| 〈v, ek〉 |2 ≤ ‖v‖2.

This implies the Riemann-Lebesgue lemma for inner product spaces:

lim
n→∞

〈v, en〉 = 0.

• The triangle inequality: In a normed space V ,

|‖u‖ − ‖v‖| ≤ ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

• Young’s inequality (r = p = q = 1):

‖u ∗ v‖L1(R) ≤ ‖u‖L1(R)‖v‖L1(R).

and

‖u ∗ v‖l1(Z) ≤ ‖u‖l1(Z)‖v‖l1(Z).

13.1.5 Convergence of Sequences

Let u1, u2, . . . be a sequence in a normed space V . We say that un → u for some u ∈ V
if ‖un − u‖ → 0 as n→∞. This is called strong convergence or convergence in norm.
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Convergence of Functions

• Pointwise convergence: We say that uk → u pointwise on I as k →∞ if

lim
k→∞

uk(x) = u(x)

for every x ∈ I. We often refer to u as the limiting function.

• Uniform convergence: We say that uk → u uniformly on [a, b] as k →∞ if

lim
k→∞
‖uk − u‖∞ = 0.

Weierstrass’ M-test: If I ⊂ R and Mk, k = 1, 2, . . ., are constants such that |uk(x)| ≤ Mk

for x ∈ I, then

∞∑
k=1

Mk <∞ ⇒
∞∑
k=1

uk(x) converges uniformly on I.

If:

• u0, u1, u2, . . . are continuous functions on [a, b]

• and u(x) =
∞∑
k=0

uk(x) is uniformly convergent for x ∈ [a, b],

then

• the series u is a continuous function on [a, b],

• we can exchange the order of summation and integration:

ˆ d

c

u(x) dx =

ˆ d

c

(
∞∑
k=0

uk(x)

)
dx =

∞∑
k=0

ˆ d

c

uk(x) dx, for a ≤ c < d ≤ b,

• and if in addition
∞∑
k=0

u′k(x) converges uniformly on [a, b], then

u′(x) =
d

dx

(
∞∑
k=0

uk(x) dx

)
=
∞∑
k=0

d

dx
uk(x) =

∞∑
k=0

u′k(x), x ∈ [a, b].

13.1.6 Integration Theory

The principal value integral is defined by

P.V.

ˆ ∞
−∞

u(x) dx = lim
R→∞

ˆ R

−R
u(x) dx.

• If F (x) =

ˆ ∞
−∞

f(x, y) dy exists for every x ∈ I and

sup
x∈I

∣∣∣∣ˆ R

−R
f(x, y) dy − F (x)

∣∣∣∣→ 0, as R→∞,

then we call F (x) uniformly convergent on I.
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• Dominated convergence:

If:

– f : R2 → C,

– F (x) =

ˆ ∞
−∞

f(x, y) dy exists for all x,

– there is a g ∈ L1(R) such that |f(x, y)| ≤ g(y) for all x, y ∈ R,

then

ˆ ∞
−∞

f(x, y) dy converges uniformly on R.

• Continuity: If f : R2 → C is continuous on [c, d]× [a,R]. Then

– FR(x) =

ˆ R

a

f(x, y) dy is continuous on [c, d]

– and if in addition f is continuous on [c, d] × [a,∞[ and F (x) =

ˆ ∞
a

f(x, y) dy con-

verges uniformly (on [c, d]), then F is continuous.

• Order of integration: If f : R2 → C is continuous on [c, d]× [a,∞[ and F (x) converges
uniformly (on [c, d]), then

ˆ d

c

(ˆ ∞
a

f(x, y) dy

)
dx =

ˆ ∞
a

(ˆ d

c

f(x, y) dx

)
dy.

• Note that we can let a = −∞ in the previous theorems by exchanging [a,R] by [−R,R]
and consider the principal values.

• Leibniz’s rule: If

– f : R2 → C and f ′x(x, y) exist and are continuous,

– F (x) =

ˆ ∞
−∞

f(x, y) dy is convergent for every x,

– and

ˆ ∞
−∞

f ′x(x, y) dy is uniformly convergent,

then

F ′(x) =
d

dx

ˆ ∞
−∞

f(x, y) dy =

ˆ ∞
−∞

f ′x(x, y) dy.
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13.2 Fourier Series

For u ∈ L1(−π, π):

ak =
1

π

ˆ π

−π
u(x) cos kx dx and bk =

1

π

ˆ π

−π
u(x) sin kx dx or ck =

1

2π

ˆ π

−π
u(x)e−ikx dx

are the Fourier coefficients (real or complex) for u. The series

S(x) =
a0

2
+
∞∑
k=1

ak cos kx+ bk sin kx =
∞∑

k=−∞

cke
ikx

is called the Fourier series of the function u (real or complex). We write u(x) ∼ S(x).
Note that:

• if u is even, then bk = 0 for k = 1, 2, 3, . . .;

• if u is odd, then ak = 0 for k = 1, 2, 3, . . ..

If u is a T -periodic function, we define Ω =
2π

T
. The real Fourier series of u is then given by

u(x) ∼ a0

2
+
∞∑
k=1

ak cos kΩx+ bk sin kΩx,

where

ak =
2

T

ˆ T/2

−T/2
u(x) cos kΩx dx and bk =

2

T

ˆ T/2

−T/2
u(x) sin kΩx dx.

The complex series is given by

u(x) ∼
∞∑

k=−∞

cke
ikΩx, where ck =

1

T

ˆ T/2

−T/2
u(x)e−ikΩx dx.

13.2.1 Parseval’s identity

• Parsevals’s identity:

1

2π

ˆ π

−π
|u(x)|2 dx =

∞∑
k=−∞

|ck|2,

where u(x) ∼
∞∑

k=−∞

cke
ikx.

• Parseval’s generalized identity:

1

2π

ˆ π

−π
u(x)v(x) dx =

∞∑
k=−∞

ckdk,

where u(x) ∼
∞∑

k=−∞

cke
ikx and v(x) ∼

∞∑
k=−∞

dke
ikx.
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13.2.2 Convergence

Kernels

• The Dirichlet kernel: Dn(x) =
n∑

k=−n

eikx, x ∈ R, n = 1, 2, 3, . . .

• The Fejér kernel: Fn(x) =
1

n+ 1

n∑
l=0

l∑
k=−l

eikx =
n∑

k=−n

(
1− |k|

n+ 1

)
eikx, n = 0, 1, 2, . . .

13.2.3 Convergence Results

• If u ∈ L1(−π, π), then u has a Fourier series.

• Let u ∈ E ′. Then

Sn(x) =
n∑

k=−n

cke
ikx → u(x+) + u(x−)

2
, x ∈ [−π, π].

• If u ∈ E and D±u(x) exists, then

lim
n→∞

Sn(x) =
u(x+) + u(x−)

2
.

• If
∞∑

k=−∞

|ck| <∞, then
∞∑

k=−∞

cke
ikx converges uniformly.

• If u ∈ E, then Sn(x)→ u(x+) + u(x−)

2
.

• If u, v ∈ E and û[k] = v̂[k], k ∈ Z, then u(x) = v(x) whenever u and v are continuous
at x.

• If u′ ∈ E, u is continuous and u(−π) = u(π), then Sn(x) converges uniformly to u(x).

• If u′ ∈ E and u is continuous on [a, b] ⊂]−π, π[, then Sn(x) converges uniformly on [a, b].

• If u ∈ E is continuous and u(−π) = u(π), then Sn(x) converges uniformly to u(x).

13.2.4 General Fourier Series

• For a given ON system, the complex numbers 〈v, ek〉, k = 1, 2, . . ., are called the gener-
alized Fourier coefficients of v.

• If W = {e1, e2, . . .} is an ON system in V , then W is closed if and only if Parseval’s
identity holds:

∞∑
k=1

| 〈v, ek〉 |2 = ‖v‖2, v ∈ V,

or if ak = 〈u, ek〉 and bk = 〈v, ek〉, then

〈u, v〉 =
∞∑
k=1

akbk.
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13.2.5 Rules for Fourier Coefficients

Let u, v ∈ E be periodic with period T > 0 and define Ω = 2π/T .

Table 13.1: Rules for Fourier Coefficients

Function Fourier coefficient Notes

c1u(x) + c2v(x) c1U [k] + c2V [k]

(u ∗ v)(x) U [k]V [k]

u(x)v(x) (U ∗ V )[n]

eimΩxu(x) U [k −m] m ∈ Z

u(ax) (per. T/a) U [k]

u(−x) F [−k]

u(x) U [−k]

u′(x) ikΩU [k]

u(n)(x) (iΩk)nU [k] n = 1, 2, . . .
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13.3 The Fourier Transform

The Fourier transform of a function u : R→ C given by

U(ω) = û(ω) = F u(ω) =

ˆ ∞
−∞

u(x)e−iωx dx, ω ∈ R,

when this integral exists.

• If u ∈ L1(R) then F u(ω) exists for all ω ∈ R and

‖F u‖∞ ≤ ‖u‖L1(R).

• For u ∈ G, the Fourier transform F u is uniformly continuous on R.

• The Riemann-Lebesgue lemma: For u ∈ G we have F u(ω)→ 0 as |w| → ∞.

13.3.1 Convergence

Kernels

• The Dirichlet kernel (on R):

DR(x) =
sin(Rx)

πx
, x 6= 0,

and DR(0) = R/π.

• The Fejér kernel (on R):

FM(t) =
1

2π

ˆ M

−M

(
1− |ω|

M

)
eiωt dω =

1− cosMx

πMx2
=
M

2π

(
sin(Mx/2)

Mx/2

)2

,

the last two equalities assumes that x 6= 0.

Inversion

• If u ∈ G(R) and D±u(x) exists, then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)eiωx dω =

u(x+) + u(x−)

2
.

• If u ∈ G(R), then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)

(
1− |ω|

R

)
eiωx dω =

u(x+) + u(x−)

2
.

• If u ∈ G(R), then

lim
R→∞

1

2π

ˆ R

−R
F u(ω)eiωx dω =

u(x+) + u(x−)

2
,

whenever the limit exists.

• Uniqueness: If u, v ∈ G(R) and F u(ω) = F v(ω), ω ∈ R, then u(x) = v(x) for
every x ∈ R where both u and v are continuous.
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13.3.2 Special Rules

• If u, U ∈ G(R) and U(ω) = F(u)(ω), then

F−1(U)(x) =
1

2π
F
(
(F u)(−ω)

)
(x) and F(F u(ω))(x) = 2πu(−x),

for every x where u is continuous and D±u(x) exist.

• If u, v ∈ G(R) such that uv,F u,F v ∈ G(R), then

F(uv)(ω) =
1

2π
F(u) ∗ F(v)(ω).

13.3.3 Plancherel’s formula

• If u ∈ G(R) ∩ L2(R), then F u ∈ L2(R).

• Plancherel’s formula: If u, v ∈ G(R) ∩ L2(R), then

ˆ ∞
−∞

u(x) v(x) dx =
1

2π

ˆ ∞
−∞
F u(ω)F v(ω) dω.

13.3.4 Rules for the Fourier Transform

Let U(ω) = F u(ω) and V (ω) = F v(ω).

Table 13.2: Rules for Fourier transform

Function Fourier transform Notes

c1u(x) + c2v(x) c1U(ω) + c2V (ω)

(u ∗ v)(x) U(ω)V (ω)

eiaxu(x) U(ω − a) a ∈ R

u(x) cos ax
U(ω + a) + U(ω − a)

2
a ∈ R

u(x) sin ax
U(ω + a)− U(ω − a)

2i
a ∈ R

u(x− x0) e−ix0ωU(ω) x0 ∈ R

u(ax)
1

|a|
U
(ω
a

)
a ∈ R, a 6= 0

u(x) U(ω)

u′(x) iωU(ω) u ∈ C(R), u′ ∈ G

u(n)(x) (iω)nU(ω) ...

xmu(x) imU (m)(ω) xmu(x) ∈ G, m = 1, 2, 3, . . .
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13.3.5 Fourier Transforms

Table 13.3: Fourier transforms

Function Fourier transform Notes

e−ax
2

√
π

a
e−ω

2/4a a > 0

e−a|x|
2a

a2 + ω2
a > 0

sgn(x)e−a|x|
−2iω

a2 + ω2
a > 0

H(x)e−ax
1

a+ iω
Re a > 0

H(−x)eax
1

a− iω
Re a > 0

1

a2 + x2

π

a
e−a|ω| a > 0

H(x+ a)−H(x− a)
2 sin aω

ω
a > 0

sgn(x)
(
H(x+ a)−H(x− a)

) 2(1− cos aω)

iω
a > 0

(a− |x|)
(
H(x+ a)−H(x− a)

) 2(1− cos aω)

ω2
a > 0

1− cos at

t2
π(a− |ω|)

(
H(ω + a)−H(ω − a)

)
a > 0
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13.4 The (unilateral) Laplace Transform

The Laplace transform of u : [0,∞[→ C is given by

Lu(s) =

ˆ ∞
0

u(t)e−st dt,

for those s = σ + iω ∈ C, σ, ω ∈ R, where this integral is convergent.

• Exponential growth: A piecewise continuous u : [0,∞[ is of exponential growth (of
order a) if there exists constants a > 0 and K > 0 such that |u(t)| ≤ Keat for t ≥ 0. The
set of all such functions will be denoted by Xa.

• Existence of Lu(s): If u ∈ Xa for some a > 0, then the Laplace transform Lu(s) exists
(at least) for Re s > a.

• Lu(s)→ 0 as R 3 s→∞.

• Lu(s) converges uniformly for Re s > a.

• Lu(s) is analytic for Re s > a.

• Periodicity. If there exists T > 0 such that u(t+ T ) = u(t) for every t ≥ 0, then

Lu(s) =
1

1− e−sT

ˆ T

0

u(τ)e−sτ dτ.

13.4.1 Inversion

• If u ∈ Xa has right- and lefthand limits at a point t > 0, then

lim
L→∞

1

2π

ˆ L

−L
Lu(σ + iω)eσteiωt dω =

u(t+) + u(t−)

2
,

where the vertical line Re z = σ is contained in the region of convergence of Lu(s)

• If u, v ∈ Xa and Lu(s) = L v(s) on some vertical line Re s = σ, then u(t) = v(t) for all t
where u and v are continuous.

13.4.2 Limit Theorems

• Final value theorem:
If u : [0,∞[→ C is bounded and lim

t→∞
u(t) = A, then A = lim

R3s→0+
sLu(s).

• Initial value theorem:
If u : [0,∞[→ C belongs to Xb and lim

t→0+
u(t) = a, then a = lim

R3s→∞
sLu(s).
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13.4.3 Rules for the Laplace Transform

Let U(s) = Lu(t), σ > σu and V (s) = L v(t), σ > σv.

Table 13.4: Rules for Laplace transforms

Function Unilateral Laplace transform Region of convergence

c1u(t) + c2v(t) c1U(s) + c2V (s) σ > max{σu, σv}
(u ∗ v)(t) U(s)V (s) σ > max{σu, σv}
eatu(t) U(s− a) σ > σu + Re a

u(t− t0)H(t− t0) e−t0sU(s) σ > σu
a > 0

u(at)
1

a
U
(s
a

)
σ > aσu, a > 0

u(t) U(s) σ > σu

u′(t) sU(s)− u(0) σ > σu

u(n)(t) snU(s)− s(n−1)u(0)− · · ·
−su(n−2)(0)− u(n−1)(0) σ > max{σu, σu′ , . . . , σu(n−1)}ˆ t

0

u(τ) dτ
U(s)

s
σ > max{σu, 0}

tmu(t) (−1)mU (m)(s) σ > σu
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13.4.4 Laplace Transforms

Table 13.5: Laplace transforms

Function Unilateral Laplace transform Region of convergence

H(t) = 1
1

s
σ > 0

t
1

s2
σ > 0

tm
m!

sm+1
σ > 0

m = 1, 2, 3, . . .

ta
Γ(a+ 1)

sa+1
σ > 0

a > 0

eat
1

s− a
σ > Re a

tmeat
m!

(s− a)m+1
σ > Re a

m = 1, 2, 3, . . .

cos at
s

s2 + a2
σ > | Im a|

t cos at
s2 − a2

(s2 + a2)2
σ > | Im a|

sin at
a

s2 + a2
σ > | Im a|

t sin at
2as

(s2 + a2)2
σ > | Im a|

sin at

t
arctan

(a
s

)
σ > | Im a|

cosh at
s

s2 − a2
σ > |Re a|

sinh at
1

s2 − a2
σ > |Re a|

J0(at)
1√

1 + s2
σ > | Im a|
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13.5 The (unilateral) Z Transform

The Z transform of a sequence u[k], k = 0, 1, 2, . . ., is defined by

Z(u)(z) =
∞∑
k=0

u[k] z−k,

for those z = x+ iy ∈ C, x, y ∈ R, where this series is absolutely convergent.

• Existence of Z u(z): For a sequence u[k], k = 0, 1, 2, . . ., the Z transform Z u(z) has a
region of convergence R such that Z u(z) is absolutely (uniformly) convergent for |z| > R
and divergent for |z| < R. It is possible that R = 0 or R =∞.

• Inversion: If U(z) = Z u(z), then

u[k] =
1

2πi

˛
γ

zk−1U(z) dz, k = 0, 1, 2, . . .

• Uniqueness: If Z u(z) = Z v(z) for all |z| > R for some R > 0, then u[k] = v[k]
for k = 0, 1, 2, . . ..

• Initial value theorem: If there’s an R > 0 such that Z u(z) exists for |z| > R, then

lim
|z|→∞

Z u(z) = u[0].
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13.5.1 Rules for the Z Transform

Let U(z) = Z(u[k])(z), |z| > Ru and V (z) = Z(v[k])(z), |z| > Rv.

Table 13.6: Rules for Z transforms

Function Unilateral Z transform transform Region of convergence

c1u[k] + c2v[k] c1U(z) + c2V (z) |z| > max{Ru, Rv}
(u ∗ v)[k] U(z)V (z) |z| > max{Ru, Rv}

aku[k] U
(z
a

)
|z| > |a|Ru, a 6= 0

u[k −m]H[k −m] z−mU(z) |z| > Ru, m = 1, 2, 3, . . .

u[k −m] z−mU(z) + z−m+1u[−1] + · · ·
· · ·+ z−1u[−m+ 1] + u[−m] |z| > Ru, m = 1, 2, 3, . . .

u[k +m] zmU(z)− zmu[0] + · · ·
· · · − z2u[m− 2]− zu[m− 1] |z| > Ru, m = 1, 2, 3, . . .

u[k] U(z) |z| > Ru

k∑
l=0

u[l]
z

z − 1
U(z) |z| > max{Ru, 1}

kmu[k]

(
−z d

dz

)m
U(z) |z| > Ru
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13.5.2 Z Transforms

Table 13.7: Z transforms

Function Unilateral Z transform Region of convergence

δ[k] 1 z ∈ C

δ[k −m] z−m |z| > 0, m = 1, 2, . . .

H[k]
z

z − 1
|z| > 1

k
z

(z − 1)2
|z| > 1

ak
z

z − a
|z| > |a|

kak
az

(z − a)2
|z| > |a|

k2ak
az2 + a2z

(z − a)3
|z| > |a|

k3ak
az3 + 4a2z2 + a3z

(z − a)4
|z| > |a|

(k + 1)ak
z2

(z − a)2
|z| > |a|(

k +m
m

)
ak

zm+1

(z − a)m+1
|z| > |a|, m = 2, 3, . . .(

k
m

)
ak

amz

(z − a)m+1
|z| > |a|, m = 2, 3, . . .(

k + n
m

)
ak

am−nzn+1

(z − a)m+1
|z| > |a|, m = 2, 3, . . .,

n = 1, . . . ,m− 1

cos kα
z2 − z cosα

z2 − 2z cosα + 1
|z| > 1

sin kα
z sinα

z2 − 2z cosα + 1
|z| > 1

k cos kα
z3 cosα− 2z2 + z cosα

(z2 − 2z cosα + 1)2
|z| > 1

k sin kα
z3 sinα− z sinα

(z2 − 2z cosα + 1)2
|z| > 1

ak

k!
ea/z |z| > 0

1

k
H[k − 1] ln

z

z − 1
|z| > 1(

n
k

)
akbn−k

(bz + a)n

zn
|z| > 0, n = 1, 2, 3, . . .
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Bessel’s inequality, 28

C[a, b], 22
Cauchy sequence, 23
Cauchy-Schwarz inequality, 26
Cesàro summation, 65

integrals, 117
circular convolution, 162
continuity

in normed spaces, 24
convolution, 100

circular, 162
discrete, 156
Fourier transform, 104
unilateral, 133

discrete, 157

D±, 11
Darboux’s theorem, 74
derivative

complex variable, 125
one-sided, 11

DFT, see Discrete Fourier transform
difference equation, 149
Dirichlet kernel, 43, 97
Discrete Fourier transform, 161
discrete time Fourier transform, 160
DTFT, see discrete time Fourier transform

E[a, b], 10
E ′[a, b], 11
exponential order, 124

Fast Fourier Transform, 163
Fejér kernel, 67, 119
FFT, see Fast Fourier Transform
Fourier coefficient, 32
Fourier coefficients, 28
Fourier series, 12

absolutely convergent, 51
arbitrary period, 18
Cesàro summation, 69

complex, 13
Dirichlet’s theorem, 45
local uniform convergence, 55
pointwise convergence, 45, 70
real, 12
smoothness and convergence, 55
uniform convergence, 54
uniqueness, 70

Fourier transform, 81
Cesàro inversion, 121
differentiation, 89
gaussian, 90
inversion, 98
normalization, 82
pointwise inversion, 122
product, 105
uniformly continuous, 85
uniqueness, 122

frequency, 83

G(R), 81
Gibb’s phenomenon, 60
Grandi’s series, 66

Heaviside function, 84, 146

infimum, 36
inner product, 25
integration

dominated convergence, 93
Fubini, 94
Leibniz, 95
order of integration, 94
uniform convergence, 93

L1(a, b), 9
l1(Z), 159
l2, 25
L2(a, b), 9, 26
Laplace transform, 123

analytic, 126
differentiation, 130
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Index Index

final value, 138
initial value, 138
inversion, 136
periodic function, 135
uniqueness, 136

limes superior, 143
limiting function, 35, 169
limsup, see limes superior
linear combination, 21
linear space, 21

basis, 22
dimension, 22
norm, 22

L∞(a, b), 36
lp, 23
Lp(a, b), 26
Lp(R), 23

M-test, 42

normed space, 22
closed, 24
complete, 24
triangle inequality, 33

nowhere differentiable, 43

Ω, 18
ON system, 27

closed, 28, 29
complete, 30
L2(−π, π), 31

orthogonal, 26
orthogonal projection, 27

Parseval’s identity, 29, 30, 78
period, 8
periodic extension, 8
periodic function

derivative, 56
integrating, 9

piecewise continuous, 10
E, 10
E ′, 11

Plancherel’s formula, 107
pointwise convergence, 35
power series, 143

uniform convergence, 144
uniqueness, 144

principal value, 92

radius of convergence, 143
region of convergence, 145
Riemann-Lebesgue lemma, 28, 86
ROC, see region of convergence

sequence, 11, 21
continuity, 39
derivative, 41
integral, 40
pairwise orthogonal, 26

series, 11, 24
sinc, 84
spectrum, 82
supremum, 36

uniform convergence, 36

Weierstrass function, 43
Weierstrass’ M-test, see M-test

Z transform
unilateral, 145

Z-transform
bilateral, 159
differentiation, 151
initial value, 159
inversion, 155
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